Computer Speech and Language 89 (2025) 101703

Contents lists available at ScienceDirect

Computer Speech & Language

journal homepage: www.elsevier.com/locate/csl

A transformer-based spelling error correction framework for Bangla
and resource scarce Indic languages
Mehedi Hasan Bijoy *!, Nahid Hossain >, Salekul Islam ¢, Swakkhar Shatabda -*

a Department of Information and Communications Engineering, Aalto University, Finland

b Department of Computer Science and Engineering, United International University, Bangladesh
¢ Department of Electrical and Computer Engineering, North South University, Bangladesh

d Department of Computer Science and Engineering, BRAC University, Bangladesh

ARTICLE INFO ABSTRACT

Keywords: Spelling error correction is the task of identifying and rectifying misspelled words in texts.
Deep learning spell checker It is a potential and active research topic in Natural Language Processing because of nu-
Spelling error correction merous applications in human language understanding. The phonetically or visually similar
?anglfa yet semantically distinct characters make it an arduous task in any language. Earlier efforts
ransiormer

on spelling error correction in Bangla and resource-scarce Indic languages focused on rule-
based, statistical, and machine learning-based methods which we found rather inefficient. In
particular, machine learning-based approaches, which exhibit superior performance to rule-
based and statistical methods, are ineffective as they correct each character regardless of its
appropriateness. In this paper, we propose a novel detector-purificator-corrector framework,
DPCSpell based on denoising transformers by addressing previous issues. In addition to that, we
present a method for large-scale corpus creation from scratch which in turn resolves the resource
limitation problem of any left-to-right scripted language. The empirical outcomes demonstrate
the effectiveness of our approach, which outperforms previous state-of-the-art methods by
attaining an exact match (EM) score of 94.78%, a precision score of 0.9487, a recall score
of 0.9478, an f1 score of 0.948, an f0.5 score of 0.9483, and a modified accuracy (MA) score
of 95.16% for Bangla spelling error correction. The models and corpus are publicly available
at https://tinyurl.com/DPCSpell.

1. Introduction

A survey shows that 89.3% of native speakers make spelling errors while writing an essay, whereas it increases to 97.7% for non-
native speakers (Flor et al., 2015). The goal of spelling error rectification is to automatically detect and correct spelling mistakes
in the text. It is an important task in Natural Language Processing (NLP) to improve the performance of numerous downstream
activities such as machine translation, text generation and summarization, sentiment analysis, and web search engines, to name a
few. However, spelling errors are usually caused by the wrong placement of phonologically and visually identical letters, as well
as typing mistakes while writing. Hence, spelling error correction methods necessitate a complete grasp of word similarity in terms
of phonetic sounds and visual shapes along with typing patterns, language reasoning, and modeling, which in turn makes it one of
the most challenging tasks in NLP.

* Corresponding author.
E-mail address: swakkhar.shatabda@bracu.ac.bd (S. Shatabda).
1 Joint First authors.

https://doi.org/10.1016/j.cs1.2024.101703

Received 22 December 2022; Received in revised form 22 March 2024; Accepted 28 July 2024

Available online 7 August 2024

0885-2308/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://www.elsevier.com/locate/csl
https://www.elsevier.com/locate/csl
https://tinyurl.com/DPCSpell
mailto:swakkhar.shatabda@bracu.ac.bd
https://doi.org/10.1016/j.csl.2024.101703
https://doi.org/10.1016/j.csl.2024.101703

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

Many approaches have been proposed for spelling error correction (SEC) which are mostly language-specific. Furthermore,
almost all of these approaches rely on a tiny corpus that is not publicly accessible, making reproducibility miserable. Besides, they
are restricted to correcting only a few types of errors. However, we emphasize Sanskrit-oriented resource-scarce languages such
as Bangla, Hindi, and Telugu SEC in this work because they share a left-to-right typing script (Rahman, 2021). Most of the SEC
methods of these languages are either based on heuristic rules (Islam et al., 2019; Ahamed et al., 2021) or conventional language
models (Gupta, 2020; Pal et al., 2021). Recently, with the emergence of NLP, some methods have been proposed utilizing the
Recurrent Neural Network (RNN) based sequence-to-sequence approach for SEC of resource-limited languages (Etoori et al., 2018).
These methods correct each character of the word regardless of its correctness, which might affect the correct characters and lead to
a high type-I error rate. Even if they are able to rectify the word, doing so would require them to unnecessarily correct letters that
are already accurate. When only a tiny portion of words are erroneous, which is common in spelling errors, this problem becomes
much more severe. However, since none of the existing studies utilize transformer-based methods in relation to the SEC task of
Bangla, Hindi, and Telugu languages, we undertake a comprehensive scrutiny to assess and authenticate the untapped capabilities
of transformers.

In this article, we propose a novel denoising transformer-based detector-purificator-corrector framework for SEC of Bangla
and low-resource Indic languages by addressing the above issues and name it DPCSpell. Unlike previous methods, it corrects the
erroneous characters only. The DPCSpell comprises three networks: a detector, a purificator, and a corrector. Firstly, the detector
module takes the erroneous word as input and masks the wrong characters using a transformer-based method. Secondly, a similar
transformer-based model is employed to further purify the masks of the detector module as the correction largely relies on the
masked characters. Finally, the original erroneous input and masked output from the purificator are fed into the corrector module
which synthesizes the correction. The whole approach is illustrated in Fig. 2. Furthermore, we propose a method for creating a
large-scale parallel corpus that resolves the resource-limitation issue for SEC of any left-to-right scripted language such as Bangla,
Hindi, or Telugu. Especially, a large-scale parallel corpus for Bangla SEC is developed using our method and made publicly available.
Likewise, the Hindi and Telugu corpora are enhanced following our method. The empirical outcomes elucidate the efficacy of our
method in the SEC and the fruitfulness of our corpus creation approach. Additionally, we promote transparency by making all our
codes publicly available, fostering reproducible baseline of the task.

The contributions of this article are summarized below:

» We propose a novel detector-purificator-corrector framework named DPCSpell, which is based on denoising transformers, for
the SEC of Bangla and resource-scarce Indic languages such as Hindi and Telugu.

» We compare our method with state-of-the-art methods in different languages. It has become the new state-of-the-art method
for Bangla SEC.

» A comprehensive comparison among rule-based, RNN-based, convolution-based, and transformer-based methods is performed
for the SEC task.

» We introduce a method for developing a large-scale parallel corpus from scratch that overcomes the resource scarcity issue of
left-to-right scripted languages. A large-scale parallel corpus for Bangla SEC is developed using our method and made publicly
available, making Bangla no longer a low-resource language for the SEC task.

The rest of the article is organized as follows: Section 2 contains a thorough literature review of Bangla SEC along with Hindi and
Telugu. Following that, the explanation of Bangla spelling error types and the BanglaSEC corpus creation procedure are provided
in Section 3. In Section 4, we explain the methodology of our proposed DPCSpell. Next, we discuss the empirical outcomes, and
compare quantitative and qualitative results in Section 5. Moreover, we criticize our method in Section 5.7. Finally, Section 6
concludes our work with future scope.

2. Literature review

A substantial amount of study has been conducted on Bengali spelling detection and correction. The Bengali spell checker is yet
to depict accurate performance like spell checkers in western languages, i.e. English. It is an active research topic in Bangla Natural
Language Processing (BNLP) because of the diversity of its applications in text generation, text summarization, web search engines,
and sentiment analysis, to name a few. Bengali spell-checking methods can broadly be classified into three categories including
rule-based, statistical, and deep-learning-based approach.

2.1. Rule-based methods

Early efforts in Bengali spell checking mostly focus on generating and employing heuristic rules based on morphology, stemming,
parts-of-speech, and so on to detect different types of errors. In these approaches, error detection and correction take place in two
distinct phases. Most of these tactics utilize a dictionary lookup table to detect the errors (Islam et al., 2019; Ahamed et al., 2021;
UzZaman and Khan, 2006; Debnath et al., 2020; Hasan et al., 2020; Rahman, 2018; Mandal and Hossain, 2017; Hossain et al.,
2021), except for a few approaches where a string matching algorithm is used Saha et al. (2019). A variety of algorithms including
minimum edit distance (Islam et al., 2019; Ahamed et al., 2021; UzZaman and Khan, 2006; Mandal and Hossain, 2017), Levenshtein’s
edit distance (Hossain et al., 2021), linear search (Debnath et al., 2020), phonetic (Rahman, 2018), soundex and metaphone (Saha
et al., 2019), and Nerving’s correct spelling suggestion algorithm (Hasan et al., 2020) are employed for correction generation. The
majority of these methods are only effective in rectifying trivial mistakes.

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

A spell checker for transliterated Bangla words has been proposed in Debnath et al. (2020) using a dictionary lookup table, an
amalgamation of linear search and Damerau-Levenshtein minimum edit distance, and linear search for error detection, correction,
and conversion respectively. In 2020, Hasan et al. (2020) proposed a spell checker by amending peter Nerving’s correct spelling
suggestion algorithm. A phonetic encoding technique for Bangla considering context-sensitive rules is designed by utilizing edit
distance, soundex, and metaphone algorithms (Rahman, 2018). Another Bengali spell checker (Mandal and Hossain, 2017) employs
a clustering-based approach that diminishes both search space and time complexity. Saha et al. (2019) brings forward a method
by incorporating edit distance, soundex, metaphone, and string matching algorithms to identify the erroneous Bangla words and
deliver the optimal suggestion. Recently, Ahamed et al. (2021) proposes a strategy that leverages Norvig’s algorithm to detect errors
in Bengali words and Jaro-Winkler distance to generate suggestions and corrections. Hossain et al. (2021) tackles the same problem
by utilizing edit distance and double methaphone algorithms based on distributed lexicons and numerical suffixes.

The rule-based methods are susceptible to handling facile mistakes including typographical (Islam et al., 2019; Ahamed et al.,
2021; UzZaman and Khan, 2006; Hossain et al., 2021; Saha et al., 2019), phonetic (UzZaman and Khan, 2006; Mandal and Hossain,
2017; Hossain et al., 2021), and cognitive (Hossain et al., 2021; Saha et al., 2019) errors with ease. Since they largely rely on
linguistic knowledge, the complexity of processing intricate errors rises significantly as it requires a lot of time and effort to manually
construct apt rules. After all, they are bound to a few specific rules for rectifying errors. Consequently, they fail to generalize to
new test cases.

2.2. Statistical methods

The statistical approach has long been prevalent in Bengali spell-checking studies because of its impressive performance.
Moreover, it does not share the drawbacks of rule-based methods as it avoids sole reliance on linguistic knowledge. The spell-
checking is carried out based on different characteristics of words through employing word count, frequency, n-gram language
model, finite state automata, and so fourth. Similar to rule-based methods, error identification and rectification happen here in two
separate phases. However, statistical approaches can further be classified into statistics-based (Gupta, 2020; Pal et al., 2021; Mittra
et al., 2019; Hosna et al., 2017; Rana et al., 2018; Abdullah et al., 2007; Khan et al., 2014) and machine-learning-based (Urmi et al.,
2016; Das and Bandyopadhyay, 2010; Sharif and Hoque, 2019) methods. These spell-checkers are proficient in terms of non-word
errors but abortive in handling real-word errors.

A hybrid method by incorporating edit distance with the N-gram language model has been proposed for detecting and correcting
word-level errors (Pal et al., 2021; Mittra et al., 2019). Furthermore, Mittra et al. (2019) utilizes the probabilities from the N-
gram model to detect sentence-level errors. Gupta (2020) and Khan et al. (2014) use a dictionary and the N-gram model for error
identification and rectification, respectively. A framework has been developed by Hosna et al. (2017) employing the N-gram language
model to create clusters of words. An amalgamation of bi-gram and tri-gram has been examined to detect and correct homophone
and real-word errors in Rana et al. (2018). Another spell checker (Abdullah et al., 2007) uses a corpus and finite state automata to
detect errors and generate relevant suggestions. Urmi et al. (2016) presents an unsupervised method to generate a rich Bengali root
word dictionary which will essentially aid in the spell-checking task. A Bengali morphological parser has been demonstrated in Das
and Bandyopadhyay (2010) by exploiting the stemming cluster approach. Sharif and Hoque (2019) employs logistic regression to
classify given Bangla texts into suspicious and non-suspicious classes.

The performance of these methods largely relies on data preprocessing and feature engineering which require domain knowledge.
Also, they ignore context by not taking word analogies into account while constructing numerical representations. Certainly, the
spell checker would function more effectively if it could determine whether the suggestion is appropriate for the context or not.

2.3. Deep-learning-based methods

Although rule-based and statistical approaches perform well, the advent of deep learning has the potential to improve
performance even further. They rectify errors by considering context which in turn makes these methods meaningful. These
approaches are especially useful for correcting real-word errors where the context of the word in relation to the sentence is required.

A hybrid approach has been proposed in Noshin Jahan et al. (2021) by integrating a bi-gram language model with Long Short-
Term Memory (LSTM) network to identify and rectify Bangla real-word errors. Sarker et al. (2020) mimics a similar methodology
for Bangla word completion and sequence prediction. A Gated Recurrent Unit (GRU) based Recurrent Neural Network (RNN) on
N-gram dataset is employed by Rakib et al. (2019) to anticipate the next word of a given sequence. Islam et al. (2018) presents a
sequence-to-sequence method for Bangla sentence correction and auto-completion that utilizes LSTM cells in both the encoder and
decoder networks. Two Convolutional Neural Network (CNN) based sub-models have recently been proposed by Rahman (2021)
to handle certain properties of Bengali and Hindi words including high inflection, flexible word order, morphological richness, and
phonetical spelling errors. Another study (Etoori et al., 2018) proposes a sequence-to-sequence approach for Hindi and Telegu spell
checking that uses an attention-based character-level LSTM network in both the encoder and decoder. Singh and Singh (2021)
mimics an analogous approach for developing a Hindi spell checker based on an encoder-decoder network where LSTM and CBOW
word embedding are utilized.

While there have been a few attempts to develop spell checkers for resource-scarce Indic languages like Hindi and Telegu,
which are Sanskrit originated and share a similar structure to Bangla, by employing Neural Machine Translation (NMT), to the
best of our knowledge, no such work has strived yet in relation to the Bengali spell checker. Therefore, in this article, we employ a
transformer-based sequence-to-sequence network for the first time in relation to the Bengali spell checker to ensure its performance.

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

2.4. Spell checkers in resource scarce languages

A variety of spell-checking approaches have been proposed for different low-resource languages including Bangla (Rahman,
2021), Hindi (Rahman, 2021; Etoori et al., 2018; Singh and Singh, 2021; Jain et al., 2018), Telugu (Etoori et al., 2018), Punjabi (Kaur
et al.,, 2019), Gujarati (Patel et al., 2021), Azerbaijani (Ahmadzade and Malekzadeh, 2021), Malayalam (Sooraj et al., 2018),
Urdu (Aziz and Anwar, 2019), Hungarian (Sikl6si et al., 2016) and Sinhala (Sooraj et al., 2018; Sonnadara et al., 0000). An innovative
method for automating the correction of spelling errors in Hungarian clinical records is introduced in Siklési et al. (2016), utilizing
a word-based algorithm and a Statistical Machine Translation (SMT) decoder, even in the absence of an orthographically correct
proofread corpus from this domain. A few recent approaches such as Jain et al. (2018), Patel et al. (2021), and Liyanapathirana
et al. (2021) propose a rule-based method for Hindi, Gujarati, and Sinhala spelling error correction using the viterbi algorithm,
edit-distance, and a set of rules respectively. Although, most of the recent and state-of-the-art methods of different languages utilize
sequence-to-sequence learning by employing encoder—-decoder architecture (Etoori et al., 2018; Singh and Singh, 2021; Kaur et al.,
2019; Ahmadzade and Malekzadeh, 2021; Sooraj et al., 2018; Sonnadara et al., 0000). Moreover, these recent approaches seem
to outperform the rule-based methods by a convincing margin. A sequence-to-sequence character level model, where bidirectional
LSTM RNN cells are utilized in both encoder and decoder, has been used for Hindi spelling error correction (Etoori et al., 2018; Singh
and Singh, 2021). Etoori et al. (2018) further devoted the same approach to Telugu spelling error rectification. Likewise, Kaur et al.
(2019), Ahmadzade and Malekzadeh (2021), Sonnadara et al. (0000), and Sooraj et al. (2018) mimic a similar encoder—decoder
architecture for Punjabi, Azerbaijani, Sinhala, and Malayalam spelling error correction respectively. Among these methods, Kaur
et al. (2019), Ahmadzade and Malekzadeh (2021), and Sooraj et al. (2018) employ LSTM cells in both the encoder and decoder.
Recently, Sonnadara et al. (0000) presented three different neural spell checkers including a character-level CNN based, a semi-
character RNN based, and a nested RNN based method for Sinhala spelling error correction. They achieved the highest performance
using the semi-character RNN based method which is the current state-of-the-art method among Sinhala spell checkers.

In this article, we propose DPCSpell, a novel transformer-based framework for spelling error correction, addressing the limitations
of existing methods that indiscriminately correct all characters in a word. Our method selectively corrects only the erroneous portion,
leading to improved performance and making it state-of-the-art for Bangla spelling error correction. Additionally, we have developed
a large-scale parallel corpus for the Bangla SEC and made it publicly accessible, overcoming the lack of a publicly available corpus.
Furthermore, we observed that existing methods tend to rely on private corpora and withhold their codes, hindering reproducibility.
In the spirit of transparency, we have made all our codes publicly accessible, fostering a reproducible baseline for the task.

3. Corpus creation

Our extensive study found that there could be 14 types of spelling errors in Bangla text (Gupta, 2020; Hossain et al., 2021;
Noshin Jahan et al., 2021). These non-word error types can be classified into five major categories namely phonetic (UzZaman and
Khan, 2006; Mandal and Hossain, 2017; Saha et al., 2019; Rana et al., 2018), visual (Hossain et al., 2021), typographical (Gupta,
2020; Islam et al., 2018), run-on (Hossain et al., 2021), and split-word errors (Noshin Jahan et al., 2021). The elucidations for all
14 types of errors are explicated as follows:

» Phonetic Error: This phenomenon arises when characters or words with analogous articulation result in different semantic
connotations. Consequently, it can be further classified into cognitive and homonym errors, depending on character or
word-level factors.

- Cognitive Error: It is a character-level error caused by the similarity in the pronunciation of different letters. There exist
several Bangla character clusters, such as 35?, A-%F, §-A-7, 9-9, A-*-7 and so forth, in which each character has a similar
sound. Example: °if — wifey, P A TN srefersaiia wafeaE, ete.

- Homonym Error: It is a word-level error in which multiple words have similar sounds but different meanings and
spellings. However, it is context-dependent as the spelling of the erroneous word in a sentence itself could be correct.

For example, FR-Fom, Fe-T°, @I, etc.

+ Visual Error: The similar visual shape of different characters causes visual errors which could further be classified into unique
character level and combined character level errors.

— Unique Character: It occurs due to the similar shapes of different single characters, such as 3—5, BT, @—@, <-4, etc.
Example: T9RTAT _, TGTRPN] PR ECIRISNCRE IR

— Combined Character: Unlike unique character level errors, it happens because of the similar visual shape of different
combined characters with other combined or single characters, like @9, 8-8, ¥-%, 35-2, and so on. Example: gt —
O, GFE > AHT,

» Typographical Error: It refers to typing mistakes that occur when we inadvertently press the wrong key while writing.
Moreover, it could further be split into the following four categories based on mistakes:

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

- Typo Deletion: It results from skipping characters while typing a word. For example, GI519t5 — (G165, P& . awel
, IqUel - g%l Cete.

- Typo Substitution: It happens because of pressing the wrong key to write a particular character. Since there exist both
phonetic and unicode-based Bangla keyboards, we consider the most popular keyboards of these types, namely Avro and
Bijoy. That means typo substitution errors are generated with respect to two keyboards:

* Typo substitution errors for Avro keyboard
* Typo substitution errors for Bijoy keyboard

Example: I - T “(Bijoy Keyboard), TF(Avro Keyboard).

- Typo Transposition: It emerges as a result of putting the (N + 1) letter of a given word in place of the Nth letter and
the Nth letter in place of the (N + 1) letter, such as IFTSIq — IS, TEAFER — GemE, T » T ete.

— Typo Insertion: It occurs due to the inadvertent inclusion of a character or redundant letter while writing a word. For
example, TS - TNOIYF, TARNFAY > ToRE@ATAd | QOF _, YOO g,

+ Split-word Error: It is caused by adding additional space when writing a word which essentially produces two words where
one of these three cases could happen: (a) both words are correct, (b) both words are wrong, and (c) only one of them is
correct. Hence, it could be classified into the following four types based on where the extra space is placed.

— Split-word Both: The space is placed in such a fashion, case (a), that both sides of the space form two correct words.

Example: 95® — 9 5@, THIE — T .

- Split-word Random: It generates two incorrect words because of the inclusion of extra space which denotes case (b).
Example: I&%q - ¢ oA, W@y - L =y,

— Split-word Left: The space is placed in such a way, case (c), that the left side of the space remains a valid word whereas
the right side is not. Example: SPPEOIRIGE — ST witaiass, AOTALIT _, gifs T,

- Split-word Right: It is the opposite of the split-word left error. Here, the left side of the space turns into an incorrect
word whereas the right side becomes a valid word. Example: $*T@lF&l — T4 (i, 2B _, 33 S

» Run-on Error: It arises from the omission of a space between two correct words in a sentence, resulting in the formation of

an incorrect word. Example: FBRG (L) —» ASMGION, @R (M) - Jiea==

We create a large-scale parallel corpus for Bangla spelling error detection and correction by incorporating all 14 types of spelling
errors. It begins with collecting unerring words, followed by synthetic error generation and further error filtration. Moreover, our
proposed method for synthetic error generation is applicable to any Bangla text corpus.

3.1. Word accumulation

The process of synthetic data generation begins with the collection of error-free words through web scraping, which involves
automatically extracting web data from a website by parsing its HTML code (Bijoy et al., 2021). In our case, we focus exclusively
on the online dictionary domain, which contains accurate words. We gather our data from a popular open-source Bengali-to-Bengali
dictionary.” To begin, we define a set of N distinct Bengali characters denoted by C = {C;,C,,...,Cy}, where C; represents the
ith character. We perform web scraping to retrieve raw texts from the dictionary for each character C; € C. For this purpose,
we utilize two well-known web scraping libraries: Requests® and BeautifulSoup.* Requests is used to extract the HTML codes,
while BeautifulSoup helps in extracting the text data. Since the open-source dictionary provides a search engine that allows us
to filter out words starting with a specific character C; € C, we generate the corresponding URLs for each character, where all
the words starting with that character can be found. The Requests library is employed to make HTTP requests and retrieve the
HTML code response, which we then parse. Using the BeautifulSoup library with the LXML parser, we extract the desired text
from the HTML code response. At this stage, we obtain a list of error-free words that require further preprocessing. To facilitate
the cleaning process, we construct another set of non-repetitive, frequently occurring Bengali characters, which includes a space,
denoted as D = {D,, D,, ..., Dg}. We then iterate through the collected unprocessed text data and remove any characters that are
not present in our constructed set of frequent Bengali characters, D. Finally, all the preprocessed errorless words, represented as
W =W}, W,, ..., W,], where W), € W is an error-free word starting with C;, are stored in a CSV file and saved on the local machine
for further use.

2 https://accessibledictionary.gov.bd/
3 https://pypi.org/project/requests/
4 https://pypi.org/project/beautifulsoup4/

https://accessibledictionary.gov.bd/
https://pypi.org/project/requests/
https://pypi.org/project/beautifulsoup4/

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

Table 1

Statistic of the Bangla SEC corpus.
Error type #No. of instances Percentage
Cognitive error 186,620 13.52%
Homonym error 123 0.01%
Visual error (Single Character) 113,912 8.25%
Visual error (Combined Character) 17,313 1.25%
Typographical deletion 102,550 7.43%
Typographical substitution (Bijoy) 222,930 16.15%
Typographical substitution (Avro) 174,248 12.62%
Typographical transposition 122,939 8.90%
Typographical insertion 124,767 9.04%
Run-on error 124,895 9.05%
Split-word error (Left) 51,610 3.74%
Split-word error (Right) 13,985 1.01%
Split-word error (Random) 111,974 8.11%
Split-word error (both) 12,798 0.93%

Total = 1,380,664

3.2. Error annexation

At this stage, we introduce the non-word errors discussed earlier into the errorless words list W. Separate dictionaries are
created to introduce cognitive, visual, typographical substitution, and run-on errors. These dictionaries can be represented as
{P, : L|,P, : L,,...,Py : Ly}, where P, represents a key such that P, € C, and L, is the list of potential erroneous characters
associated with that key P,. The dictionaries consist of N character keys denoted as P = [P}, P,, ..., Py, where P, is the nth character
in C. Additionally, L, is the list of potential erroneous characters for each key P, € P, denoted as L, = [L,, L,, ..., Lg], where L;
represents the ith potential erroneous character such that L, € D and L; # P,. To introduce cognitive, visual, typographical,
substitution, and run-on errors to the words W, € W, we make use of dictionaries that were previously constructed. However,
we employ list comprehension to introduce typographical deletion, transposition, insertion, and split-word errors. Additionally, we
compile a list of homonym errors using a similar approach employed for gathering the list of error-free words, W. It is worth noting
that we deliberately modify a single character of an accurate word to introduce different types of errors. Ultimately, we construct
a large-scale parallel corpus denoted as M = {S; : T}, S, : T»,..., S, : T,}, where each M, represents an ith source (5;) - target (7})
pair, with the source being the erroneous word and the target being the accurate word.

3.3. Error filtration

Several types of synthesized errors, namely typo deletion, typo Avro substitution, and typo Bijoy substitution, appear to
generate certain vague errors to some extent. These errors are produced by an employed dictionary lookup table ({P; : L, P, :
L,,....,Py @ Ly}), resulting in a wide range of error variations, surpassing the typical range of human mistakes. To address
this, we employ a transformer-based language model depicted in Fig. 1(a) to identify and filter out these rare and unnecessary
errors, thereby enhancing the sophistication of the corpus. The error filtration model effectively removes these infrequent errors.
We utilize the same transformer architecture employed in the detector, purificator, and corrector networks for error filtration. By
incorporating a modified corrector network in our DPCSpell, we exclude the atypical error patterns associated with these three
error types that are unlikely to be made by humans. We have made the final corpus publicly available, which can be found at
https://tinyurl.com/DPCSpell.

3.4. Corpus statistic and error percentage validation

Table 1 provides an overview of the statistics for the final corpus. Among the different error types, typographical substitution
(Bijoy) exhibits the highest number of erroneous pairs, comprising 16.15% of the corpus, followed by typographical substitution
(Avro) at 12.62%. In contrast, homonym errors account for a mere 123 instances, representing the smallest proportion among all
error types. Examining individual error categories, five out of the 14 categories contain less than 5% errors, while typographical
substitution (Bijoy) stands out with over 15% errors. The remaining categories exhibit approximately 10% errors each. Among
the five major error categories, phonetic, visual, typographical, run-on, and split-word errors account for 13.53%, 9.50%, 54.14%,
9.05%, and 13.77% of the corpus, respectively. It is noteworthy that typographical errors contribute slightly more than half of the
total errors, aligning with our initial expectations based on inspection.

The percentages of errors in the corpus are not predetermined by us, as they depend on the characteristics of the corpus itself.
Specifically, the error annexation process relies solely on the constructed dictionaries for each error type. Considering the potential
set of erroneous characters (L, € L) for each key in the dictionary (P, € P), it is expected that the number of typographical errors

https://tinyurl.com/DPCSpell

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

Top-K Corrections Corrector
Module —>| Top-K Corrections

Corrector
Module

Purificator
Module

(a) Direct correction (b) The proposed method where correction is generated using detected and further
purified masks input

Fig. 1. (Left) A direct correction approach which takes a sequence as input and corrects the whole sequence regardless of its correctness. (Right) Our proposed
DPCSpell which takes a sequence as input and detects and purifies the erroneous portion in the sequence. Finally the corrector module fixes the faulty segment
of the sequence only.

would be higher compared to other error types. To validate the error percentages in the corpus, we conducted a thorough analysis of
human tendencies to make errors while writing, using real-world data. We collected a substantial amount of data from the comment
sections of public Facebook® posts. Subsequently, we cleaned the corpus of these comments and searched for erroneous words based
on our generated corpus (M). The results of this inspection provided further validation of the percentage distribution of different
error types in our corpus. In most categories, we found a similar proportion of erroneous words in the real-world corpus, confirming
the accuracy of our corpus composition. It is worth noting that the percentage of typographical deletion errors deviated from the
expected proportion, which was anticipated due to the reasons mentioned earlier. However, to ensure fairness in the inspection
process, we created a balanced version of our corpus where no error type accounted for more than 10% of the entire corpus. This
approach allows for a comprehensive evaluation of the different error categories within a controlled and equitable framework.

4. Methodology
4.1. Problem formulation

The character-level spelling error rectification task aims to map an erroneous sequence denoted as X; = {X, X,,..., X, } into
the corresponding correct sequence represented as ¥ = (¥}, Y, ...,Y),;} where X I, and Yj are characters of the same language, and
N € Z* and M € Z* but not necessarily required to be equal.

Our proposed method consists of three modules: the detector module D(.), the purificator module P(.), and the corrector module
C(.). In the detector module, X; is inputted to identify the positions of erroneous characters. These erroneous characters are then
replaced with a special token, [M ASK], resulting in Xp, = {Xp,Xp,,.... Xp, }, where X D, is equal to X, if the jth character is
correct, otherwise it is the special token, [M ASK]. Next, in the purificator module, an amalgamation of X; and X, denoted as
Xip={(SEP)+ X;+(SEP)+ X+ (SEP)}, is used as input. The special token (SEP) is used to distinguish between X; and X .
The purificator module further refines the detected erroneous positions, resulting in Xp = {Xp, Xp,, ..., Xp_ }. Finally, the corrector
module focuses on correcting only the detected erroneous characters rather than correcting all the characters in X,. It combines
the initial erroneous sequence X; with the detected and purified positions of erroneous characters in X p. This combined sequence
is represented as X;p = {(SEP)+ X; + (SEP)+ Xp + (SEP)}. The X,p is then used as input to the model, which generates the
corresponding correct sequence Y.

4.2. Overview of DPCSpell

The working mechanism of DPCSpell, depicted in Fig. 2, is an amalgamation of a detector, purificator, and corrector network.
The detector network (D(.)) employs a transformer to identify the positions of incorrect characters (X) in an input sequence X;.
Similarly, both the purificator (P(.)) and corrector (C(.)) networks utilize transformers for their respective tasks. The purificator takes
an amalgamation of X; and X as input and produces a more precise mask, X;p. Finally, the corrector transformer utilizes X; and
X p to generate the correction Y. To summarize, the framework’s detector module receives an erroneous word as input and attempts
to detect the erroneous characters. On the other hand, the corrector module utilizes the refined mask from the purificator module,
which incorporates the output of the detector, to generate appropriate corrections. The entire procedure can be mathematically
represented as follows:

Y = (XT, PUXT. DIXT; Wp)); Wp)): W))

5 hittps://www.facebook.com/

https://www.facebook.com/

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

Purificator f Corrector
’/ - - \\ e N

TEF = TE
H] [H [Hs

j* i - Y Plllp® A\~ PlllpP - Y,

Input

Fig. 2. (Left) The detector network of DPCSpell which takes an input sequence as input and makes an initial attempt to detect the erroneous portions of the
sequence. (Middle) The purificator network which takes the actual input sequence along with the detected sequence from the detector to further purify the

erroneous fragments of the sequence. (Right) The corrector network which combines actual input with the purified sequence from the purificator to generate
the correction.

Detector

Encoder Block X 5

Decoder Block X 5
Encoder Block X 5

Decoder Block X 5
Encoder Block X 5
Decoder Block X 5

Table 2

Comparison between the working mechanism of direct approaches and our
proposed DPCSpell.

Method Input Output
Direct gEfaTe s T afe T g A7 fede - gofdae
DPCSpell s s @ wafods @A 7f d® - qfes

4.3. Motivations

The recent emergence of NLP and deep learning has achieved astonishing success in spelling error correction. Currently, state-of-
the-art spell checkers of different resource-constrained languages leverage seq2seq models and employ a direct correction approach,
as exemplified in Fig. 1(a). However, these methods are end-to-end in nature and exhibit enormous false alarm rates, as they correct
all the characters of the sequence regardless of its correctness. This problem is exacerbated when just a tiny percentage of wrong
characters occur in the entire sequence, which appears to be a general trend, as evidenced in Table 2.

DCSpell (Li et al.,, 2021) addresses this problem by presenting a transformer-based detector-corrector framework that first
determines whether a character is erroneous or not before correcting it, which we found rather inefficacious in correction generation.
Since the correction generation largely relies on the detected erroneous character sequence, it often fails to precisely identify the
positions of erroneous characters which essentially misguides the corrector network. We resolve this by introducing a purificator
in between the detector and corrector module that further cleanses the detected erroneous characters. Our proposed DPCSpell
eliminates the drawbacks associated with direct correction approaches as it only corrects the wrong characters in the sequence
by detecting the erroneous portions in the input sequence beforehand. The addition of the purificator module delineates a lucid
improvement over the detector-corrector framework. Furthermore, DPCSpell converges much quicker than both the detector-

corrector and direct correction strategies. Fig. 1(b) depicts our proposed DPCSpell, consisting of the detector, purificator, and
corrector modules.

4.4. Structure of DPCSpell

The building blocks of the transformer used in the detector, purificator, and corrector network is delineated in Fig. 3. The encoder
and decoder of the transformer comprised of a stack of five residual encoding and decoding blocks respectively.

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

ﬁ Add & Normalize \
(R

0 e || e et Borara
ormalize

A A

Decoder Block X 5

Add & Normalize
Feed Forward | Feed Forward ﬁ T T

Encoder-Decoder Attention
A A

A4

ﬁ Add & Normalize

Encoder Block X 5

T T ﬁ Add & Normalize ‘

Multi-Head Self-Attention

G YA I ——

Masked Multi-Head Self-Attention
q9<—{ Positional Encoding }—)@B K
3 K

A A
Input Embedding | Input Embedding
Positional Encoding }—)@P
@ @ S

Output Embedding | Output Embedding

Fig. 3. (Left) The encoding component of the transformer is a stack of identical encoders, which is responsible for mapping an input sequence to a sequence
of dense vector representations. (Right) The decoding module which is also a stack of identical decoders. It accepts the encoded output from the encoder along
with the decoder output from the previous time step to generate a prediction sequence.

Encoder: The encoder takes the input sequence, X; = {X; ,X,,,..., X, }, and compresses it into a sequence of context vectors,
Z =({Z\,Z,,...,Zy}, which capture the information from all tokens in X, including their positions. To achieve this, each token
X;, € X is first passed through an embedding layer, and then the positional encoding is added elementwise. This results in
integrated embeddings that are ready to be processed by the multi-head attention layer. The multi-head attention layer incorporates
h different attentions calculated from 4 heads in parallel. The self-attention can be seen as a combination of queries, keys, and values,
where a scalar self-attention score is calculated by taking the dot product between the query and the key. The score is then divided
by the square root of the size of the key vector and passed through a softmax layer. The resulting softmax score is then multiplied
by the value vector, generating an attention vector for a specific head. The formula for calculating the multi-head attention is as
follows (Vaswani et al., 2017).

MultiHead(Q,K,V) = Concat(Head,, Head,, ..., Head,)W* 2)
Head; = Attention(QW2 , KWX, vw}) 3)
QKT

Attention(Q, K, V) = Softmax(

w (€))
k

Here, O, K, and V refer to query, key, and value respectively and Wl.j is their corresponding weight matrix. And d; denotes the
dimension of the key vectors.

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

Next, the responses of multi-head attention layer is then passed through position-wise feed-forward neural networks incorporating
residual connections from input of the layer. The output of feed-forward layer is further normalized which is then ready to pass
through next encoder block, except for the final encoding block which outputs a sequence of context vectors Z = {Z,, Z,, ..., Zy }
for the decoder.

Decoder: The decoder () is analogous to the encoder (£) but with two distinct multi-head attention layers: self-attention
(masked) and encoder-attention. In the self-attention layer, the decoder representation serves as the query, while the encoder
representations are used as the key and value in the standard multi-head attention layer for encoder-attention. The decoder
representation from the final decoding block is then fed through a linear layer, followed by a softmax activation function, generating
the output sequence Y = {Y,,Y,, ..., Yy }.

4.4.1. Detector network

Given an input sequence X; = {X;, X, X, }, the detector aims to identify and label potential erroneous characters. It returns
a labeled sequence X, = D(X;) = {Xp,,Xp,, Xp, }, where the positions of potential erroneous characters are masked. If the ith
character X I, € X, is deemed erroneous, it is replaced with a special token called [MASK] (X D, = [M ASK]). Otherwise, it copies
the corresponding character from the input sequence (Xp, = X, as shown in Eq. (5)). The detected erroneous sequence X, is
generated by passing the decoded representation of X; through a linear layer, J,.

(5)

i

X = [MASK], ifsoftmax(’fd(éd(éd(X]’)))):index([MASK])
DT x Ip» otherwise

We use the categorical cross-entropy loss function to measure the goodness of fit of our method which is demonstrated in Eq. (6)
and adam optimizer with a constant learning rate to minimize the loss.
N
CEp =- Z XD poruas 108(D(s0f tmax(F (644 (X 1)) (6)
i

Where X Doers is the ground truth sequence of X; and D(softmax(F;(54(E4(X) is the detected sequence from the detector, D.

al
4.4.2. Purificator network

The purificator module is identical to the detector except for the input sequence. It concatenates the detected sequence X, with
initial input X; such that X;, = {(SEP) + X; + (SEP) + X, + (SEP)}. It further purifies the detected erroneous character sequence
Xp and returns an updated labeled sequence Xp = P(X;, Xp) = {Xp ,Xp,,..., Xp, } from X, ;. Mathematically X can be defined
as follows:

Xp = [MASK], if softn?ax(ﬁ‘"p(ép(ép(X,l, XDi)))) = index({(M ASK]) e
! X, otherwise
Similar to detector, here we use cross-entropy loss function and adam optimizer with an unvarying learning rate.
N
CEp =-— Z XD o 108 (P(s0ftmax(F,(6,(E,(X 1, X)) 8)

4.4.3. Corrector network

The corrector module takes an amalgamation of the initial input sequence X;, as well as the detected and further purified
masks X, from the purificator, as input. It generates the corrections ¥ = C(X;, X;p) = {¥},Y5,..., Yy }. Similar to the purificator,
it concatenates X; and X, in the form of X;p = {(SEP) + X; + (SEP) + X, + (SEP)}. The vocabulary of corrector is denoted as
V ={V,V,,...,Vy} where V; is the ith character of a particular language. For each character position X;p € X;p with the [M ASK]
token, the corrector (€(.)) predicts a character ¥; € V. The encoder (&.(.)) of the corrector network generates a sequence of context
vectors Ze = (Ze,, Ze,, .- Ze, } for each character Z;p € Z;p. The encoder representation (ER) is then passed through the
decoder (6,(.)), and the decoder representation (DR) is processed through a fully connected layer J, to generate the correction Y.

ER=¢&.(X;p) ©
DR =6.(ER) (10)
Y = softmax(F(DR; EN)) (1n

Here we employ the cross-entropy loss function to measure the goodness of fit of our corrector network which is denoted in
equation-(12) and adam optimizer with a steady learning rate to minimize the loss.

N
CEg ==Y X, log(sof tmax(F,(6.(&(X ,, Xp))) (12)

Where X Lnetual is the gold standard annotation of X; and softmax(F,(5,(&.(X 1 Xp))) denotes the generated correction from the
corrector network €.

10

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

Table 3

Instances from the Bangla SEC corpus.
Source Mask Target Error Type
S e LRER] Cognitive Error

TTe s Tnre Homonym Error

ofrereae e _a ererF99 Visual Error (Single Character)
aZme @ag_d aZw Visual Error (Combined Character)
ofi2 EE] W Typographical Deletion

[QIEICE) Q@_c7oq [QIKICE Typographical Substitution (Bijoy)
SO SR _26e $LpF Typographical Substitution (Avro)

BENMA TSIT qT_© Typographical Transposition
TS SO_(T&W OEW Typographical Insertion
e e e Run-on Error

Ry T_blE LRy Split-word Error (Left)

o= i oz faem foze@ Split-word Error (Right)
R Y TR _TY RIEES Split-word Error (Random)
ofy fawe @ _wes af¥@@® Split-word Error (both)

5. Experimental analysis

We adopt a standard train-validation-test set approach, widely used for the spelling error correction task (Zhang et al., 2020;
Farra et al., 2014; Xie et al., 2023). By dividing the data into three sets — training, validation, and test — we prevent the model from
merely memorizing the training examples, enabling a better assessment of its ability to generalize. The segregation of these sets
is paramount, guaranteeing a dependable appraisal of the model’s prowess on previously unseen data. Moreover, when comparing
different models, using the same test set is pivotal to ensure fair and accurate comparisons. This rigorous methodology enhances
the reliability of our spelling error correction method.

5.1. Datasets

5.1.1. Bangla

We use our large-scale parallel corpus for Bangla spelling error correction. To do so, we split our corpus into training, validation,
and test sets for further use. However, the instances of our Bangla SEC corpus have been exemplified in Table 3.

Training Set The training set accounts for 80% of the data in the corpus. We take 80% of the data from each individual error
type to prevent the corpus from being biased. The training set comprises 1,104,531 correct-erroneous word pairs.

Validation Set We keep only 5% of the data from the corpus in the validation set. Similar to the training set, we consider 5%
of each error category to construct this set as well. As a result, the validation set contains 69,034 instances.

Test Set It is comprised of 15% errors of all 14 error types, as we did in the training and validation sets. It accounts for 207,099
instances of the corpus.

5.1.2. Hindi and Telugu

We utilize the Hindi and Telugu parallel corpora used in Etoori et al. (2018) along with their training and test sets. The training
and test sets of the Hindi corpus contain 90,489 and 9,049 instances, respectively. Likewise, there are 64,518 training and 7727
test pairs in the Telugu corpus.
Hindi* We enhance the corpus by introducing nine types of errors including cognitive, visual (single), typographical insertion,
typographical deletion, typographical transposition, run-on, split-word left, split-word right, split-word random, and split-word both
errors. The enriched training and test sets include 177,038 and 19,660 instances, respectively.
Telugu* We bring forward variety in the Telugu corpus by incorporating those nine errors that were previously introduced in
the Hindi corpus. Consequently, the enhanced training and test set contain 214,828 and 20,279 correct-erroneous word pairs,
respectively (see Table 4).

5.2. Baselines

We compare our method with seven baselines including several state-of-the-art methods of different resource-scarce languages.

» RuleBased (Hossain et al., 2021): This method utilizes Double Metaphone and Edit Distance algorithms for Bangla spelling
error detection and correction.

11

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

Table 4
Examples from the enhanced Hindi (left) and Telugu (right) SEC corpus.
Hindi Telugu
Source Mask Target ‘ Source Mask Target
s siffoa a sifRaf@a | SsSeso 30_¢b0 Sweso
qreh q& Tqh S ofy ﬁ%é’é_oé‘& gﬁg@e)g&
SIISHET Sg8H_ SII8H T e Feeen

* GRUSeq2Seq: Bahdanau et al. (2014) enriches the conventional RNN encoder-decoder architecture, by allowing the model
to focus only on the pertinent details from the encoder while generating a target word, for neural machine translation,
where GRU is employed in both the encoder and decoder. We make it a baseline for Bangla spelling error correction through
Bangla-to-Bangla translation.

LSTMSeq2Seq (Etoori et al., 2018): This method brings forward a character level seq2seq model utilizing LSTM cells in both
the encoder and decoder for spelling error correction of two resource-scarce Indic languages namely Hindi and Telugu.
ConvSeq2Seq: Gehring et al. (2017) presents a fully convolutional sequence-to-sequence architecture with an attention module
for neural machine translation. We consider it as another baseline to rectify Bangla spelling errors through Bangla-to-Bangla
translation.

VocabLearner (Rahman, 2021): This method introduces a word-level vocabulary learner for Bangla spelling error correction
by employing a 1D CNN-based architecture named Coordinated CNN (CoCNN).

DTransformer (Kuznetsov and Urdiales, 2021): This method utilizes a denoising autoencoder transformer for spelling error
correction, on a short input string, for four resource-limited languages. The autoencoder is employed for synthetic error
annexation, whereas the transformer is responsible for error rectification.

DCSpell (Li et al., 2021): This method initiates a transformer-based detector-corrector framework, where a character is detected
first whether it is erroneous or not before being corrected, to rectify Chinese spelling errors.

5.3. Performance evaluation
We evaluate the performance of our method using Precision, Recall, F-scores, Exact Match, and Modified Accuracy.

5.3.1. Precision, recall, and Fp-score

Precision denotes the credibility of a model by signifying the quality of its positive predictions, whereas recall quantifies the
proportion of actual positives precisely identified by the model. Precision is beneficial in such situations when a False Positive (FP)
is more of a concern than a False Negative (FN). In contrast, recall is a useful metric in such scenarios where False Negative (FN)
is highly expensive. The formulas for calculating the precision and recall are as follows.

n
Precision = M (13)
Z,‘:] |ei|
n
118 Ue;
Recall = M (14)
Zi:l |gi|

where g; and e; denote gold-standard targets and model’s predicted levels for ith word such that W, € W. The intersection for
gold-standard targets and model’s predicted levels for a given word M; € M is considered as,

giVe; ={e€e; | g € g;,match(g,e)} (15)

F-measure is the harmonic mean of precision and recall. It is required for comparing different models with high recall and low
precision scores. We calculate the Fp-scores for g values of 1 and 0.5. The formula for calculating Fp-score is as follows.

(14 p?) X Precision X Recall

16
(p? X Precision) + Recall (16)

Fp score =

Eq. (16): p =1 (Fl-score) and f = 0.5 (F0.5-score) denote equal weighting of precision and recall, and emphasize on precision
while calculating the score

5.3.2. Exact match (EM)

It delineates the efficacy of the model across all classes like accuracy (= (TP+TN)/(TP+ FP+TN + FN)), where TP, TN, FP,
FN refers to True Positive, True Negative, False Positive, and False Negative. The output of the model (u(x)) is deemed to be correct
when the prediction (§) exactly matches the label (y). The equation is as follows.

f(x) _ {1, lf }AJ = M(x) =y (17)

0, otherwise

12

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

Table 5

The comparison of the quantitative outcomes of our proposed DPCSpell with other methods in the Bangla SEC task.
Method EM MA PR RE F1 F0.5
RuleBased (Hossain et al., 2021) 55.71% - 0.5620 0.5571 0.5578 0.5598
GRUSeq2Seq (Bahdanau et al., 2014) 75.56% 76.56% 0.8072 0.7556 0.7726 0.7899
ConvSeq2Seq (Gehring et al., 2017) 78.85% 80.10% 0.8452 0.7885 0.8259 0.8259
VocabLearner (Rahman, 2021) 22.47% - - - - -
DTransformer (Kuznetsov and Urdiales, 2021) 90.44% 91.12% 0.9061 0.9044 0.9047 0.9056
DCSpell (Li et al., 2021) 84.23% 85.07% 0.8458 0.8423 0.8434 0.8446
DPCSpell 94.78% 95.16% 0.9487 0.9478 0.948 0.9483

EM is the ratio of the number of correct predictions and total instances. The higher the EM score, the better the model
performance. The formula for calculating the EM score is a follows.

_XW
-~ N

EM (18)

Eq. (18): where Zfl f(x) is the number of correct prediction, and N refers to the number of instances

5.3.3. Modified accuracy (MA)

We calculate the accuracy within the top-K predictions and call it Modified Accuracy. Unlike accuracy, in our case Exact Match,
it elucidates the effectiveness of a model over corpora. The prediction is considered positive if any outcome within top-K can be
found in the desired corpus. The formula to evaluate a prediction whether it is positive or not is as follows.

1, if = pu(x)=ropK e W
g(x) = . (19)
0, otherwise

MA, similar to EM, is calculated as the ratio of total positive predictions and instances of the corpus. A higher MA score denotes

the credible performance of the model. The formula for calculating the MA score is a follows.

)
-4 80

MA (20)

Eq. (20): where Zfl g(x) and N denote number of positive predictions and instances in the corpus
5.4. Hyperparameters

The encoder and decoder of our detector, purificator, and corrector network is a combination of 5 encoding and decoding layers
respectively. Moreover, we use 8 attention heads in both encoder and decoder. A hidden size of 128 is employed in the encoder
and decoder while we kept the pf dimension two-fold of the hidden dimension. Next, a dropout ratio of 10% has been employed
in the encoder and decoder in all three modules to avoid overfitting issues. Likewise, we clip the gradient at 1 to eliminate the
drawback of exploding gradient. Finally, we use a constant learning rate of 5¢ —4 in adam optimizer to minimize the loss and train
the detector, purificator, and corrector network for 100 epochs respectively.

5.5. Main results

5.5.1. Spelling error correction for Bangla language

We compare the performances of several state-of-the-art methods and our constructed baselines with our proposed DPCSpell for
rectifying Bangla spelling errors. To ensure a fair comparison, we train, validate, and test these methods on our parallel corpus. The
empirical outcome of these approaches can be found in Table 5.

Our proposed DPCSpell outperforms all the listed methods in Table 5 by a convincing margin. It outperforms RuleBase (Hossain
et al., 2021), GRUSeq2Seq (Bahdanau et al., 2014), and ConvSeq2Seq (Gehring et al., 2017) by a higher Exact Match (EM) score
of 39.07%, 19.22%, and 15.93%, respectively. Likewise, it outperforms DCSpell (Li et al., 2021) by an EM score of 10.55%,
a Modified Accuracy (MA) score of 10.09%, a precision (PR) score of 0.1029, a recall (RE) score of 0.1055, an F1 score of
0.1046, and an FO0.5 score of 0.1037. Besides, it suppresses the effectiveness of the recent Bangla spelling error correction method
named VocabLearner (Rahman, 2021) by accomplishing a 72.31% higher EM score. Moreover, it improves the performance of
DTransformer (Kuznetsov and Urdiales, 2021), which is the second best method to ours, by attaining higher EM, MA, PR, RE, F1,
and F0.5 scores of 4.43%, 4.04%, 4.26%, 4.34%, 4.33%, and 4.27%, respectively.

In addition, Table 5 depicts a thorough comparison between rule-base, GRU-base, convolution-based, and transformer-based
methods. The rule-based method performs the worst followed by GRU-based and convolution-based methods. However, convolution-
based method slightly improved the performance of GRU-based methods. In contrast, transformer-based methods show promising
result. We compare, one-stage, two-stage, and three-stage transformer-based methods which are DTransformer, DCSpell, and
DPCSpell, respectively. The empirical outcome delineates that two-stage DCSpell performs worst among these three, where our
proposed three-stage DPCSpell performs the best.

13

M.H. Bijoy et al. Computer Speech & Language 89 (2025) 101703

Table 6

The comparison of the quantitative outcomes of our proposed DPCSpell in individual error types of the Bangla SEC with other competitive methods.
Error type DTransformer DCSpell DPCSpell

EM MA EM MA EM MA

Homonym error 11.38% 73.98% 11.38% 67.04% 17.07% 72.36%
Typo deletion 90.92% 91.36% 79.59% 80.02% 94.07% 94.38%
Typo substituition (Bijoy) 91.80% 91.95% 85.98% 86.26% 95.55% 95.67 %
Typo substituition (Avro) 93.35% 93.50% 89.40% 90.09% 97.55% 97.63%
Visual error (Single) 79.98% 80.96% 77.48% 78.38% 90.85% 91.61%
Cognitive error 90.21% 90.73% 83.12% 83.58% 94.79% 95.25%
Typo transposition 87.43% 89.01% 81.58% 82.32% 93.35% 94.70%
Visual error (Combined) 93.27% 82.14% 88.50% 76.97% 96.21% 82.13%
Run-on error 88.32% 89.37% 80.71% 83.34% 90.09% 90.75%
Typo insertion 97.16% 97.27% 91.66% 92.73% 99.68% 99.72%
Split-word error (Left) 92.64% 94.63% 86.65% 88.13% 95.38% 97.64%
Split-word error (Right) 93.88% 95.26% 80.00% 81.09% 97.71% 98.43%
Split-word error (Random) 89.80% 92.74% 82.85% 85.29% 93.96% 95.12%
Split-word error (both) 93.59% 95.10% 86.32% 87.64% 96.41% 97.36%
Weighted average 90.44% 91.12% 84.23% 85.07% 94.78% 95.16%

5.5.2. Bangla spelling error analysis

To examine the effectiveness of our method in Bangla spelling error correction, we compare the performance of individual error
types with two competitive methods in Table 6. It outperforms both DTransformer and DCSpell by a significant EM score in all
individual error types. Likewise, it exceeds the listed methods in terms of MA in all individual error categories, except homonym
error where DTransformer achieves the highest score. However, it performs poorly in the case of correcting homonym errors due
to the insufficient number of training instances.

For further analysis, we compare some rectification findings of these methods on the test data in Table 7 where the tick and cross
marks denote whether the prediction of the method is correct or not. We randomly choose six out of 14 error types to demonstrate
the qualitative outcomes of DTransformer, DCSpell, and DPCSpell. The empirical outcomes of our DPCSpell validate its effectiveness
in correcting Bangla spelling errors. Especially, our method is proficient in rectifying all types of errors, whereas DTransformer and
DCSpell suffer from correcting words with longer sequences and combined characters. However, the mistakes made by our method
are also quite relevant. In the case of homonym errors, even though it fails to generate the actual correction (912f9) of the erroneous
word (@@%), the prediction (¥1R9) itself is a correct word and makes complete sense. In another example, our DPCSpell generates
% for the erroneous word SIIFF*, whereas the actual correction is SFF*. Once again, even if the correction is a valid word, it
fails to generate the actual correct word due to imprecise mask prediction. The detector module predicted the mask as _3%_and
the purificator module further purified it to __¥%* where the actual mask should be ®_F%% consequently leading to an imprecise
correction.

5.5.3. Spelling error correction for resource-scarce Indic languages

We compare the performance of our method with three other tactics including LSTMSeq2Seq, DTransformer, and DCSpell in
two low-resource Indic languages namely Hindi and Telugu, which are Sanskrit-oriented and follow left-to-right typing script like
Bangla (Rahman, 2021). The performance of these methods can be found in Table 8. Despite the fact that DTransformer performs
incredibly well in both languages, our proposed DPCSpell achieves competitive performance with it. Most importantly, we notice
that our method starts outperforming other approaches when it has a sufficient amount of training data. Initially, it was the worst
performing method for Hindi and Telugu when training on a tiny corpus of Hindi and Telugu respectively from Etoori et al.
(2018). Afterwards, we enhance these corpora by incorporating nine types of spelling errors, utilizing our corpus creation tactic.
Consequently, it outperforms LSTMSeq2Seq and DCSpell for both Hindi and Telugu SEC task. It suppresses the performance of
DCSpell for Hindi SEC by EM score of 1.13%, and PR, RE, F1 and FO0.5 scores of 8.5 x 1073, 1.13 x 1072, 1.39 x 1072, 6.2 x 1073.
Meanwhile, it attains more competitive performance with DTransformer while outperforms DCSpell for Telugu SEC by improving
its prior EM, PR, RE, F1, and FO0.5 scores by 1.83%, 5.84 x 1072, 1.83 x 1072, 2.39 x 1072, 3.82 x 1072, respectively.

In comparison to our method’s performance on Bangla where DPCSpell outperforms all the listed methods including DTrans-
former, it appears to suppress the performance of other methods on large-scale corpora as it shows a lucid improvement in its
performance on the enhanced corpora. Since the enhanced Hindi and Telugu corpus is 6.54% and 5.64% times smaller than the
Bangla corpus, it will perform even better in the Hindi and Telugu languages for large enough corpora.

5.6. Ablation study

In this subsection, we investigate the impact of several DPCSpell components including the effect of the detector and purification
module, masked characters, and beam search decoding for Bangla spelling error correction.

14

M.H. Bijoy et al.

Table 7

Computer Speech & Language 89 (2025) 101703

Comparison of our proposed DPCSpell with other competitive methods in relation to the

qualitative result of Bangla SEC task.

Homonym Error ‘

Typographical Deletion

Input: =gfs

Input: CSHILFITTQ

(DTransformer) SIgfs (DTransformer) TSIRILEE X
(DCSpell) @ig® X (DCSpell) SSRIYFRELG X
(DPCSpell) &S X* (DPCSpell) Semifa=siarye v
Run-on Error ‘ Visual Error (Combined)
Input: Feo@era@ier Input: s
(DTransformer) Ffes@eid v | (D Transformer) TSR X

(DCSpell) Ffosefidfamts X (DCSpell) &2
(DPCSpell) =feozene (DPCSpell) &8 v
Split-word Error (both) ‘ Typographical Insertion
Input: fa=if Input: Feerelq

(DTransformer) fa @f% v
(DCSpell) fa = v
(DPCSpell) fa =¥ v

(DTransformer) 32O
(DCSpell) JeTei@ X
(DPCSpell) e

Table 8

The comparison of the quantitative outcomes of our proposed DPCSpell with other competitive methods for resource-scarce Indic languages such as Hindi and

Telugu, where * indicates the enhanced corpus.

Method EM PR RE F1 F0.5 Corpus
Lang.
LSTMSeq2Seq (Etoori et al., 2018) 85.40% - - - - Hindi
DTransformer (Kuznetsov and Urdiales, 2021) 90.43% 0.906 0.9043 0.9066 0.9075 Hindi
DCSpell (Li et al., 2021) 82.18% 0.8724 0.8218 0.8386 0.8562 Hindi
DPCSpell 78.64% 0.8431 0.7864 0.8207 0.8238 Hindi
DTransformer (Kuznetsov and Urdiales, 2021) 96.71% 0.976 0.9671 0.9663 0.976 Hindi*
DCSpell (Li et al., 2021) 85.80% 0.9588 0.8580 0.8912 0.9248 Hindi*
DPCSpell 86.93% 0.9673 0.8693 0.9051 0.9310 Hindi*
LSTMSeq2Seq (Etoori et al., 2018) 89.30% - - - - Telugu
DTransformer (Kuznetsov and Urdiales, 2021) 95.66% 0.9587 0