
Computer Speech and Language 89 (2025) 101703

A
0

A
a
M
a

b

c

d

A

K
D
S
B
T

1

n
i
a
f
a
o
t

h
R

Contents lists available at ScienceDirect

Computer Speech & Language

journal homepage: www.elsevier.com/locate/csl

transformer-based spelling error correction framework for Bangla
nd resource scarce Indic languages
ehedi Hasan Bijoy a,1, Nahid Hossain b,1, Salekul Islam c, Swakkhar Shatabda d,∗

Department of Information and Communications Engineering, Aalto University, Finland
Department of Computer Science and Engineering, United International University, Bangladesh
Department of Electrical and Computer Engineering, North South University, Bangladesh
Department of Computer Science and Engineering, BRAC University, Bangladesh

R T I C L E I N F O

eywords:
eep learning spell checker
pelling error correction
angla
ransformer

A B S T R A C T

Spelling error correction is the task of identifying and rectifying misspelled words in texts.
It is a potential and active research topic in Natural Language Processing because of nu-
merous applications in human language understanding. The phonetically or visually similar
yet semantically distinct characters make it an arduous task in any language. Earlier efforts
on spelling error correction in Bangla and resource-scarce Indic languages focused on rule-
based, statistical, and machine learning-based methods which we found rather inefficient. In
particular, machine learning-based approaches, which exhibit superior performance to rule-
based and statistical methods, are ineffective as they correct each character regardless of its
appropriateness. In this paper, we propose a novel detector-purificator-corrector framework,
DPCSpell based on denoising transformers by addressing previous issues. In addition to that, we
present a method for large-scale corpus creation from scratch which in turn resolves the resource
limitation problem of any left-to-right scripted language. The empirical outcomes demonstrate
the effectiveness of our approach, which outperforms previous state-of-the-art methods by
attaining an exact match (EM) score of 94.78%, a precision score of 0.9487, a recall score
of 0.9478, an f1 score of 0.948, an f0.5 score of 0.9483, and a modified accuracy (MA) score
of 95.16% for Bangla spelling error correction. The models and corpus are publicly available
at https://tinyurl.com/DPCSpell.

. Introduction

A survey shows that 89.3% of native speakers make spelling errors while writing an essay, whereas it increases to 97.7% for non-
ative speakers (Flor et al., 2015). The goal of spelling error rectification is to automatically detect and correct spelling mistakes
n the text. It is an important task in Natural Language Processing (NLP) to improve the performance of numerous downstream
ctivities such as machine translation, text generation and summarization, sentiment analysis, and web search engines, to name a
ew. However, spelling errors are usually caused by the wrong placement of phonologically and visually identical letters, as well
s typing mistakes while writing. Hence, spelling error correction methods necessitate a complete grasp of word similarity in terms
f phonetic sounds and visual shapes along with typing patterns, language reasoning, and modeling, which in turn makes it one of
he most challenging tasks in NLP.

∗ Corresponding author.
E-mail address: swakkhar.shatabda@bracu.ac.bd (S. Shatabda).

1 Joint First authors.
vailable online 7 August 2024
885-2308/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

ttps://doi.org/10.1016/j.csl.2024.101703
eceived 22 December 2022; Received in revised form 22 March 2024; Accepted 28 July 2024

https://www.elsevier.com/locate/csl
https://www.elsevier.com/locate/csl
https://tinyurl.com/DPCSpell
mailto:swakkhar.shatabda@bracu.ac.bd
https://doi.org/10.1016/j.csl.2024.101703
https://doi.org/10.1016/j.csl.2024.101703

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

a
a
a
m
m
R
T
a
a
m
B
o

a
e
m
t
m
w
l
H
L
m
c

T
i
c
c

2

t
L
a
r

2

p
d
U
2
m
e
e
m

Many approaches have been proposed for spelling error correction (SEC) which are mostly language-specific. Furthermore,
lmost all of these approaches rely on a tiny corpus that is not publicly accessible, making reproducibility miserable. Besides, they
re restricted to correcting only a few types of errors. However, we emphasize Sanskrit-oriented resource-scarce languages such
s Bangla, Hindi, and Telugu SEC in this work because they share a left-to-right typing script (Rahman, 2021). Most of the SEC
ethods of these languages are either based on heuristic rules (Islam et al., 2019; Ahamed et al., 2021) or conventional language
odels (Gupta, 2020; Pal et al., 2021). Recently, with the emergence of NLP, some methods have been proposed utilizing the
ecurrent Neural Network (RNN) based sequence-to-sequence approach for SEC of resource-limited languages (Etoori et al., 2018).
hese methods correct each character of the word regardless of its correctness, which might affect the correct characters and lead to
high type-I error rate. Even if they are able to rectify the word, doing so would require them to unnecessarily correct letters that

re already accurate. When only a tiny portion of words are erroneous, which is common in spelling errors, this problem becomes
uch more severe. However, since none of the existing studies utilize transformer-based methods in relation to the SEC task of
angla, Hindi, and Telugu languages, we undertake a comprehensive scrutiny to assess and authenticate the untapped capabilities
f transformers.

In this article, we propose a novel denoising transformer-based detector-purificator-corrector framework for SEC of Bangla
nd low-resource Indic languages by addressing the above issues and name it DPCSpell. Unlike previous methods, it corrects the
rroneous characters only. The DPCSpell comprises three networks: a detector, a purificator, and a corrector. Firstly, the detector
odule takes the erroneous word as input and masks the wrong characters using a transformer-based method. Secondly, a similar

ransformer-based model is employed to further purify the masks of the detector module as the correction largely relies on the
asked characters. Finally, the original erroneous input and masked output from the purificator are fed into the corrector module
hich synthesizes the correction. The whole approach is illustrated in Fig. 2. Furthermore, we propose a method for creating a

arge-scale parallel corpus that resolves the resource-limitation issue for SEC of any left-to-right scripted language such as Bangla,
indi, or Telugu. Especially, a large-scale parallel corpus for Bangla SEC is developed using our method and made publicly available.
ikewise, the Hindi and Telugu corpora are enhanced following our method. The empirical outcomes elucidate the efficacy of our
ethod in the SEC and the fruitfulness of our corpus creation approach. Additionally, we promote transparency by making all our

odes publicly available, fostering reproducible baseline of the task.
The contributions of this article are summarized below:

• We propose a novel detector-purificator-corrector framework named DPCSpell, which is based on denoising transformers, for
the SEC of Bangla and resource-scarce Indic languages such as Hindi and Telugu.

• We compare our method with state-of-the-art methods in different languages. It has become the new state-of-the-art method
for Bangla SEC.

• A comprehensive comparison among rule-based, RNN-based, convolution-based, and transformer-based methods is performed
for the SEC task.

• We introduce a method for developing a large-scale parallel corpus from scratch that overcomes the resource scarcity issue of
left-to-right scripted languages. A large-scale parallel corpus for Bangla SEC is developed using our method and made publicly
available, making Bangla no longer a low-resource language for the SEC task.

The rest of the article is organized as follows: Section 2 contains a thorough literature review of Bangla SEC along with Hindi and
elugu. Following that, the explanation of Bangla spelling error types and the BanglaSEC corpus creation procedure are provided

n Section 3. In Section 4, we explain the methodology of our proposed DPCSpell. Next, we discuss the empirical outcomes, and
ompare quantitative and qualitative results in Section 5. Moreover, we criticize our method in Section 5.7. Finally, Section 6
oncludes our work with future scope.

. Literature review

A substantial amount of study has been conducted on Bengali spelling detection and correction. The Bengali spell checker is yet
o depict accurate performance like spell checkers in western languages, i.e. English. It is an active research topic in Bangla Natural
anguage Processing (BNLP) because of the diversity of its applications in text generation, text summarization, web search engines,
nd sentiment analysis, to name a few. Bengali spell-checking methods can broadly be classified into three categories including
ule-based, statistical, and deep-learning-based approach.

.1. Rule-based methods

Early efforts in Bengali spell checking mostly focus on generating and employing heuristic rules based on morphology, stemming,
arts-of-speech, and so on to detect different types of errors. In these approaches, error detection and correction take place in two
istinct phases. Most of these tactics utilize a dictionary lookup table to detect the errors (Islam et al., 2019; Ahamed et al., 2021;
zZaman and Khan, 2006; Debnath et al., 2020; Hasan et al., 2020; Rahman, 2018; Mandal and Hossain, 2017; Hossain et al.,
021), except for a few approaches where a string matching algorithm is used Saha et al. (2019). A variety of algorithms including
inimum edit distance (Islam et al., 2019; Ahamed et al., 2021; UzZaman and Khan, 2006; Mandal and Hossain, 2017), Levenshtein’s

dit distance (Hossain et al., 2021), linear search (Debnath et al., 2020), phonetic (Rahman, 2018), soundex and metaphone (Saha
t al., 2019), and Nerving’s correct spelling suggestion algorithm (Hasan et al., 2020) are employed for correction generation. The
2

ajority of these methods are only effective in rectifying trivial mistakes.

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

a
a
s
d
a
b
d
i
b

2
2
l
c
n

2

M
c
m
s
e
2
e

w
g
i
m
a
d
w
a
c

A
s

2

p
a

T
f
N
s
d
t
p
c
m
w

w
b
t

A spell checker for transliterated Bangla words has been proposed in Debnath et al. (2020) using a dictionary lookup table, an
malgamation of linear search and Damerau–Levenshtein minimum edit distance, and linear search for error detection, correction,
nd conversion respectively. In 2020, Hasan et al. (2020) proposed a spell checker by amending peter Nerving’s correct spelling
uggestion algorithm. A phonetic encoding technique for Bangla considering context-sensitive rules is designed by utilizing edit
istance, soundex, and metaphone algorithms (Rahman, 2018). Another Bengali spell checker (Mandal and Hossain, 2017) employs
clustering-based approach that diminishes both search space and time complexity. Saha et al. (2019) brings forward a method

y incorporating edit distance, soundex, metaphone, and string matching algorithms to identify the erroneous Bangla words and
eliver the optimal suggestion. Recently, Ahamed et al. (2021) proposes a strategy that leverages Norvig’s algorithm to detect errors
n Bengali words and Jaro–Winkler distance to generate suggestions and corrections. Hossain et al. (2021) tackles the same problem
y utilizing edit distance and double methaphone algorithms based on distributed lexicons and numerical suffixes.

The rule-based methods are susceptible to handling facile mistakes including typographical (Islam et al., 2019; Ahamed et al.,
021; UzZaman and Khan, 2006; Hossain et al., 2021; Saha et al., 2019), phonetic (UzZaman and Khan, 2006; Mandal and Hossain,
017; Hossain et al., 2021), and cognitive (Hossain et al., 2021; Saha et al., 2019) errors with ease. Since they largely rely on
inguistic knowledge, the complexity of processing intricate errors rises significantly as it requires a lot of time and effort to manually
onstruct apt rules. After all, they are bound to a few specific rules for rectifying errors. Consequently, they fail to generalize to
ew test cases.

.2. Statistical methods

The statistical approach has long been prevalent in Bengali spell-checking studies because of its impressive performance.
oreover, it does not share the drawbacks of rule-based methods as it avoids sole reliance on linguistic knowledge. The spell-

hecking is carried out based on different characteristics of words through employing word count, frequency, n-gram language
odel, finite state automata, and so fourth. Similar to rule-based methods, error identification and rectification happen here in two

eparate phases. However, statistical approaches can further be classified into statistics-based (Gupta, 2020; Pal et al., 2021; Mittra
t al., 2019; Hosna et al., 2017; Rana et al., 2018; Abdullah et al., 2007; Khan et al., 2014) and machine-learning-based (Urmi et al.,
016; Das and Bandyopadhyay, 2010; Sharif and Hoque, 2019) methods. These spell-checkers are proficient in terms of non-word
rrors but abortive in handling real-word errors.

A hybrid method by incorporating edit distance with the N-gram language model has been proposed for detecting and correcting
ord-level errors (Pal et al., 2021; Mittra et al., 2019). Furthermore, Mittra et al. (2019) utilizes the probabilities from the N-
ram model to detect sentence-level errors. Gupta (2020) and Khan et al. (2014) use a dictionary and the N-gram model for error
dentification and rectification, respectively. A framework has been developed by Hosna et al. (2017) employing the N-gram language
odel to create clusters of words. An amalgamation of bi-gram and tri-gram has been examined to detect and correct homophone

nd real-word errors in Rana et al. (2018). Another spell checker (Abdullah et al., 2007) uses a corpus and finite state automata to
etect errors and generate relevant suggestions. Urmi et al. (2016) presents an unsupervised method to generate a rich Bengali root
ord dictionary which will essentially aid in the spell-checking task. A Bengali morphological parser has been demonstrated in Das
nd Bandyopadhyay (2010) by exploiting the stemming cluster approach. Sharif and Hoque (2019) employs logistic regression to
lassify given Bangla texts into suspicious and non-suspicious classes.

The performance of these methods largely relies on data preprocessing and feature engineering which require domain knowledge.
lso, they ignore context by not taking word analogies into account while constructing numerical representations. Certainly, the
pell checker would function more effectively if it could determine whether the suggestion is appropriate for the context or not.

.3. Deep-learning-based methods

Although rule-based and statistical approaches perform well, the advent of deep learning has the potential to improve
erformance even further. They rectify errors by considering context which in turn makes these methods meaningful. These
pproaches are especially useful for correcting real-word errors where the context of the word in relation to the sentence is required.

A hybrid approach has been proposed in Noshin Jahan et al. (2021) by integrating a bi-gram language model with Long Short-
erm Memory (LSTM) network to identify and rectify Bangla real-word errors. Sarker et al. (2020) mimics a similar methodology
or Bangla word completion and sequence prediction. A Gated Recurrent Unit (GRU) based Recurrent Neural Network (RNN) on
-gram dataset is employed by Rakib et al. (2019) to anticipate the next word of a given sequence. Islam et al. (2018) presents a

equence-to-sequence method for Bangla sentence correction and auto-completion that utilizes LSTM cells in both the encoder and
ecoder networks. Two Convolutional Neural Network (CNN) based sub-models have recently been proposed by Rahman (2021)
o handle certain properties of Bengali and Hindi words including high inflection, flexible word order, morphological richness, and
honetical spelling errors. Another study (Etoori et al., 2018) proposes a sequence-to-sequence approach for Hindi and Telegu spell
hecking that uses an attention-based character-level LSTM network in both the encoder and decoder. Singh and Singh (2021)
imics an analogous approach for developing a Hindi spell checker based on an encoder–decoder network where LSTM and CBOW
ord embedding are utilized.

While there have been a few attempts to develop spell checkers for resource-scarce Indic languages like Hindi and Telegu,
hich are Sanskrit originated and share a similar structure to Bangla, by employing Neural Machine Translation (NMT), to the
est of our knowledge, no such work has strived yet in relation to the Bengali spell checker. Therefore, in this article, we employ a
3

ransformer-based sequence-to-sequence network for the first time in relation to the Bengali spell checker to ensure its performance.

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

2
e
U
m
a
p
e
e
s
2
t
L
a
(
a
e
R
c
u

o
l
a
F
I

3

N
K
2
1

2.4. Spell checkers in resource scarce languages

A variety of spell-checking approaches have been proposed for different low-resource languages including Bangla (Rahman,
021), Hindi (Rahman, 2021; Etoori et al., 2018; Singh and Singh, 2021; Jain et al., 2018), Telugu (Etoori et al., 2018), Punjabi (Kaur
t al., 2019), Gujarati (Patel et al., 2021), Azerbaijani (Ahmadzade and Malekzadeh, 2021), Malayalam (Sooraj et al., 2018),
rdu (Aziz and Anwar, 2019), Hungarian (Siklósi et al., 2016) and Sinhala (Sooraj et al., 2018; Sonnadara et al., 0000). An innovative
ethod for automating the correction of spelling errors in Hungarian clinical records is introduced in Siklósi et al. (2016), utilizing
word-based algorithm and a Statistical Machine Translation (SMT) decoder, even in the absence of an orthographically correct

roofread corpus from this domain. A few recent approaches such as Jain et al. (2018), Patel et al. (2021), and Liyanapathirana
t al. (2021) propose a rule-based method for Hindi, Gujarati, and Sinhala spelling error correction using the viterbi algorithm,
dit-distance, and a set of rules respectively. Although, most of the recent and state-of-the-art methods of different languages utilize
equence-to-sequence learning by employing encoder–decoder architecture (Etoori et al., 2018; Singh and Singh, 2021; Kaur et al.,
019; Ahmadzade and Malekzadeh, 2021; Sooraj et al., 2018; Sonnadara et al., 0000). Moreover, these recent approaches seem
o outperform the rule-based methods by a convincing margin. A sequence-to-sequence character level model, where bidirectional
STM RNN cells are utilized in both encoder and decoder, has been used for Hindi spelling error correction (Etoori et al., 2018; Singh
nd Singh, 2021). Etoori et al. (2018) further devoted the same approach to Telugu spelling error rectification. Likewise, Kaur et al.
2019), Ahmadzade and Malekzadeh (2021), Sonnadara et al. (0000), and Sooraj et al. (2018) mimic a similar encoder–decoder
rchitecture for Punjabi, Azerbaijani, Sinhala, and Malayalam spelling error correction respectively. Among these methods, Kaur
t al. (2019), Ahmadzade and Malekzadeh (2021), and Sooraj et al. (2018) employ LSTM cells in both the encoder and decoder.
ecently, Sonnadara et al. (0000) presented three different neural spell checkers including a character-level CNN based, a semi-
haracter RNN based, and a nested RNN based method for Sinhala spelling error correction. They achieved the highest performance
sing the semi-character RNN based method which is the current state-of-the-art method among Sinhala spell checkers.

In this article, we propose DPCSpell, a novel transformer-based framework for spelling error correction, addressing the limitations
f existing methods that indiscriminately correct all characters in a word. Our method selectively corrects only the erroneous portion,
eading to improved performance and making it state-of-the-art for Bangla spelling error correction. Additionally, we have developed
large-scale parallel corpus for the Bangla SEC and made it publicly accessible, overcoming the lack of a publicly available corpus.
urthermore, we observed that existing methods tend to rely on private corpora and withhold their codes, hindering reproducibility.
n the spirit of transparency, we have made all our codes publicly accessible, fostering a reproducible baseline for the task.

. Corpus creation

Our extensive study found that there could be 14 types of spelling errors in Bangla text (Gupta, 2020; Hossain et al., 2021;
oshin Jahan et al., 2021). These non-word error types can be classified into five major categories namely phonetic (UzZaman and
han, 2006; Mandal and Hossain, 2017; Saha et al., 2019; Rana et al., 2018), visual (Hossain et al., 2021), typographical (Gupta,
020; Islam et al., 2018), run-on (Hossain et al., 2021), and split-word errors (Noshin Jahan et al., 2021). The elucidations for all
4 types of errors are explicated as follows:

• Phonetic Error: This phenomenon arises when characters or words with analogous articulation result in different semantic
connotations. Consequently, it can be further classified into cognitive and homonym errors, depending on character or
word-level factors.

– Cognitive Error: It is a character-level error caused by the similarity in the pronunciation of different letters. There exist
several Bangla character clusters, such as , , , , and so forth, in which each character has a similar
sound. Example: → , → , → , etc.

– Homonym Error: It is a word-level error in which multiple words have similar sounds but different meanings and
spellings. However, it is context-dependent as the spelling of the erroneous word in a sentence itself could be correct.
For example, – , – , – , etc.

• Visual Error: The similar visual shape of different characters causes visual errors which could further be classified into unique
character level and combined character level errors.

– Unique Character: It occurs due to the similar shapes of different single characters, such as , , , , etc.
Example: → , → .

– Combined Character: Unlike unique character level errors, it happens because of the similar visual shape of different
combined characters with other combined or single characters, like , , , , and so on. Example: →

, → .

• Typographical Error: It refers to typing mistakes that occur when we inadvertently press the wrong key while writing.
Moreover, it could further be split into the following four categories based on mistakes:
4

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

e
p

3

a
o
d

– Typo Deletion: It results from skipping characters while typing a word. For example, → , →

, → , etc.

– Typo Substitution: It happens because of pressing the wrong key to write a particular character. Since there exist both
phonetic and unicode-based Bangla keyboards, we consider the most popular keyboards of these types, namely Avro and
Bijoy. That means typo substitution errors are generated with respect to two keyboards:

∗ Typo substitution errors for Avro keyboard
∗ Typo substitution errors for Bijoy keyboard

Example: → (Bijoy Keyboard), (Avro Keyboard).

– Typo Transposition: It emerges as a result of putting the (𝑁 + 1)𝑡ℎ letter of a given word in place of the 𝑁th letter and
the 𝑁th letter in place of the (𝑁 + 1)𝑡ℎ letter, such as → , → , → , etc.

– Typo Insertion: It occurs due to the inadvertent inclusion of a character or redundant letter while writing a word. For
example, → , → , → , etc.

• Split-word Error: It is caused by adding additional space when writing a word which essentially produces two words where
one of these three cases could happen: (a) both words are correct, (b) both words are wrong, and (c) only one of them is
correct. Hence, it could be classified into the following four types based on where the extra space is placed.

– Split-word Both: The space is placed in such a fashion, case (a), that both sides of the space form two correct words.
Example: → , → .

– Split-word Random: It generates two incorrect words because of the inclusion of extra space which denotes case (b).
Example: → , → .

– Split-word Left: The space is placed in such a way, case (c), that the left side of the space remains a valid word whereas
the right side is not. Example: → , → .

– Split-word Right: It is the opposite of the split-word left error. Here, the left side of the space turns into an incorrect
word whereas the right side becomes a valid word. Example: → , → .

• Run-on Error: It arises from the omission of a space between two correct words in a sentence, resulting in the formation of
an incorrect word. Example: () → , () →

We create a large-scale parallel corpus for Bangla spelling error detection and correction by incorporating all 14 types of spelling
rrors. It begins with collecting unerring words, followed by synthetic error generation and further error filtration. Moreover, our
roposed method for synthetic error generation is applicable to any Bangla text corpus.

.1. Word accumulation

The process of synthetic data generation begins with the collection of error-free words through web scraping, which involves
utomatically extracting web data from a website by parsing its HTML code (Bijoy et al., 2021). In our case, we focus exclusively
n the online dictionary domain, which contains accurate words. We gather our data from a popular open-source Bengali-to-Bengali
ictionary.2 To begin, we define a set of 𝑁 distinct Bengali characters denoted by 𝐶 = {𝐶1, 𝐶2,… , 𝐶𝑁}, where 𝐶𝑖 represents the

𝑖th character. We perform web scraping to retrieve raw texts from the dictionary for each character 𝐶𝑖 ∈ 𝐶. For this purpose,
we utilize two well-known web scraping libraries: Requests3 and BeautifulSoup.4 Requests is used to extract the HTML codes,
while BeautifulSoup helps in extracting the text data. Since the open-source dictionary provides a search engine that allows us
to filter out words starting with a specific character 𝐶𝑖 ∈ 𝐶, we generate the corresponding URLs for each character, where all
the words starting with that character can be found. The Requests library is employed to make HTTP requests and retrieve the
HTML code response, which we then parse. Using the BeautifulSoup library with the LXML parser, we extract the desired text
from the HTML code response. At this stage, we obtain a list of error-free words that require further preprocessing. To facilitate
the cleaning process, we construct another set of non-repetitive, frequently occurring Bengali characters, which includes a space,
denoted as 𝐷 = {𝐷1, 𝐷2,… , 𝐷𝐾}. We then iterate through the collected unprocessed text data and remove any characters that are
not present in our constructed set of frequent Bengali characters, 𝐷. Finally, all the preprocessed errorless words, represented as
𝑊 = [𝑊1,𝑊2,… ,𝑊𝑝], where 𝑊𝑘 ∈ 𝑊 is an error-free word starting with 𝐶𝑖, are stored in a CSV file and saved on the local machine
for further use.

2 https://accessibledictionary.gov.bd/
3 https://pypi.org/project/requests/
4 https://pypi.org/project/beautifulsoup4/
5

https://accessibledictionary.gov.bd/
https://pypi.org/project/requests/
https://pypi.org/project/beautifulsoup4/

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

c
{
a

s
w
c
t
a
p

3

g
𝐿
t
e
W
i
e
h

3

(
(
e
s
t
9
t

S
s

Table 1
Statistic of the Bangla SEC corpus.

Error type #No. of instances Percentage

Cognitive error 186,620 13.52%
Homonym error 123 0.01%
Visual error (Single Character) 113,912 8.25%
Visual error (Combined Character) 17,313 1.25%
Typographical deletion 102,550 7.43%
Typographical substitution (Bijoy) 222,930 16.15%
Typographical substitution (Avro) 174,248 12.62%
Typographical transposition 122,939 8.90%
Typographical insertion 124,767 9.04%
Run-on error 124,895 9.05%
Split-word error (Left) 51,610 3.74%
Split-word error (Right) 13,985 1.01%
Split-word error (Random) 111,974 8.11%
Split-word error (both) 12,798 0.93%

Total = 1,380,664

3.2. Error annexation

At this stage, we introduce the non-word errors discussed earlier into the errorless words list 𝑊 . Separate dictionaries are
reated to introduce cognitive, visual, typographical substitution, and run-on errors. These dictionaries can be represented as
𝑃1 ∶ 𝐿1, 𝑃2 ∶ 𝐿2,… , 𝑃𝑁 ∶ 𝐿𝑁}, where 𝑃𝑛 represents a key such that 𝑃𝑛 ∈ 𝐶, and 𝐿𝑛 is the list of potential erroneous characters
ssociated with that key 𝑃𝑛. The dictionaries consist of 𝑁 character keys denoted as 𝑃 = [𝑃1, 𝑃2,… , 𝑃𝑁], where 𝑃𝑛 is the 𝑛th character

in 𝐶. Additionally, 𝐿𝑛 is the list of potential erroneous characters for each key 𝑃𝑛 ∈ 𝑃 , denoted as 𝐿𝑛 = [𝐿1, 𝐿2,… , 𝐿𝑅], where 𝐿𝑖
represents the 𝑖th potential erroneous character such that 𝐿𝑖 ∈ 𝐷 and 𝐿𝑖 ≠ 𝑃𝑛. To introduce cognitive, visual, typographical,
ubstitution, and run-on errors to the words 𝑊𝑖 ∈ 𝑊 , we make use of dictionaries that were previously constructed. However,
e employ list comprehension to introduce typographical deletion, transposition, insertion, and split-word errors. Additionally, we

ompile a list of homonym errors using a similar approach employed for gathering the list of error-free words, 𝑊 . It is worth noting
hat we deliberately modify a single character of an accurate word to introduce different types of errors. Ultimately, we construct
large-scale parallel corpus denoted as 𝑀 = {𝑆1 ∶ 𝑇1, 𝑆2 ∶ 𝑇2,… , 𝑆𝑡 ∶ 𝑇𝑡}, where each 𝑀𝑖 represents an 𝑖th source (𝑆𝑖) - target (𝑇𝑖)
air, with the source being the erroneous word and the target being the accurate word.

.3. Error filtration

Several types of synthesized errors, namely typo deletion, typo Avro substitution, and typo Bijoy substitution, appear to
enerate certain vague errors to some extent. These errors are produced by an employed dictionary lookup table ({𝑃1 ∶ 𝐿1, 𝑃2 ∶
2,… , 𝑃𝑁 ∶ 𝐿𝑁}), resulting in a wide range of error variations, surpassing the typical range of human mistakes. To address

his, we employ a transformer-based language model depicted in Fig. 1(a) to identify and filter out these rare and unnecessary
rrors, thereby enhancing the sophistication of the corpus. The error filtration model effectively removes these infrequent errors.
e utilize the same transformer architecture employed in the detector, purificator, and corrector networks for error filtration. By

ncorporating a modified corrector network in our DPCSpell, we exclude the atypical error patterns associated with these three
rror types that are unlikely to be made by humans. We have made the final corpus publicly available, which can be found at
ttps://tinyurl.com/DPCSpell.

.4. Corpus statistic and error percentage validation

Table 1 provides an overview of the statistics for the final corpus. Among the different error types, typographical substitution
Bijoy) exhibits the highest number of erroneous pairs, comprising 16.15% of the corpus, followed by typographical substitution
Avro) at 12.62%. In contrast, homonym errors account for a mere 123 instances, representing the smallest proportion among all
rror types. Examining individual error categories, five out of the 14 categories contain less than 5% errors, while typographical
ubstitution (Bijoy) stands out with over 15% errors. The remaining categories exhibit approximately 10% errors each. Among
he five major error categories, phonetic, visual, typographical, run-on, and split-word errors account for 13.53%, 9.50%, 54.14%,
.05%, and 13.77% of the corpus, respectively. It is noteworthy that typographical errors contribute slightly more than half of the
otal errors, aligning with our initial expectations based on inspection.

The percentages of errors in the corpus are not predetermined by us, as they depend on the characteristics of the corpus itself.
pecifically, the error annexation process relies solely on the constructed dictionaries for each error type. Considering the potential
et of erroneous characters (𝐿 ∈ 𝐿) for each key in the dictionary (𝑃 ∈ 𝑃), it is expected that the number of typographical errors
6

𝑛 𝑛

https://tinyurl.com/DPCSpell

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

t
𝑁

C

r

Fig. 1. (Left) A direct correction approach which takes a sequence as input and corrects the whole sequence regardless of its correctness. (Right) Our proposed
DPCSpell which takes a sequence as input and detects and purifies the erroneous portion in the sequence. Finally the corrector module fixes the faulty segment
of the sequence only.

would be higher compared to other error types. To validate the error percentages in the corpus, we conducted a thorough analysis of
human tendencies to make errors while writing, using real-world data. We collected a substantial amount of data from the comment
sections of public Facebook5 posts. Subsequently, we cleaned the corpus of these comments and searched for erroneous words based
on our generated corpus (𝑀). The results of this inspection provided further validation of the percentage distribution of different
error types in our corpus. In most categories, we found a similar proportion of erroneous words in the real-world corpus, confirming
the accuracy of our corpus composition. It is worth noting that the percentage of typographical deletion errors deviated from the
expected proportion, which was anticipated due to the reasons mentioned earlier. However, to ensure fairness in the inspection
process, we created a balanced version of our corpus where no error type accounted for more than 10% of the entire corpus. This
approach allows for a comprehensive evaluation of the different error categories within a controlled and equitable framework.

4. Methodology

4.1. Problem formulation

The character-level spelling error rectification task aims to map an erroneous sequence denoted as 𝑋𝐼 = {𝑋𝐼1 , 𝑋𝐼2 ,… , 𝑋𝐼𝑁 } into
he corresponding correct sequence represented as 𝑌 = {𝑌1, 𝑌2,… , ̂𝑌𝑀} where 𝑋𝐼𝑗 and 𝑌𝑗 are characters of the same language, and
∈ 𝑍+ and 𝑀 ∈ 𝑍+ but not necessarily required to be equal.
Our proposed method consists of three modules: the detector module D(.), the purificator module P(.), and the corrector module

(.). In the detector module, 𝑋𝐼 is inputted to identify the positions of erroneous characters. These erroneous characters are then
eplaced with a special token, [𝑀𝐴𝑆𝐾], resulting in 𝑋𝐷 = {𝑋𝐷1

, 𝑋𝐷2
,… , 𝑋𝐷𝑁

}, where 𝑋𝐷𝑗
is equal to 𝑋𝐼𝑗 if the 𝑗th character is

correct, otherwise it is the special token, [𝑀𝐴𝑆𝐾]. Next, in the purificator module, an amalgamation of 𝑋𝐼 and 𝑋𝐷, denoted as
𝑋𝐼𝐷 = {⟨𝑆𝐸𝑃 ⟩+𝑋𝐼 + ⟨𝑆𝐸𝑃 ⟩+𝑋𝐷 + ⟨𝑆𝐸𝑃 ⟩}, is used as input. The special token ⟨𝑆𝐸𝑃 ⟩ is used to distinguish between 𝑋𝐼 and 𝑋𝐷.
The purificator module further refines the detected erroneous positions, resulting in 𝑋𝑃 = {𝑋𝑃1 , 𝑋𝑃2 ,… , 𝑋𝑃𝑁 }. Finally, the corrector
module focuses on correcting only the detected erroneous characters rather than correcting all the characters in 𝑋𝐼 . It combines
the initial erroneous sequence 𝑋𝐼 with the detected and purified positions of erroneous characters in 𝑋𝑃 . This combined sequence
is represented as 𝑋𝐼𝑃 = {⟨𝑆𝐸𝑃 ⟩ + 𝑋𝐼 + ⟨𝑆𝐸𝑃 ⟩ + 𝑋𝑃 + ⟨𝑆𝐸𝑃 ⟩}. The 𝑋𝐼𝑃 is then used as input to the model, which generates the
corresponding correct sequence 𝑌 .

4.2. Overview of DPCSpell

The working mechanism of DPCSpell, depicted in Fig. 2, is an amalgamation of a detector, purificator, and corrector network.
The detector network (D(.)) employs a transformer to identify the positions of incorrect characters (𝑋𝐷) in an input sequence 𝑋𝐼 .
Similarly, both the purificator (P(.)) and corrector (C(.)) networks utilize transformers for their respective tasks. The purificator takes
an amalgamation of 𝑋𝐼 and 𝑋𝐷 as input and produces a more precise mask, 𝑋𝐼𝐷. Finally, the corrector transformer utilizes 𝑋𝐼 and
𝑋𝐼𝐷 to generate the correction 𝑌 . To summarize, the framework’s detector module receives an erroneous word as input and attempts
to detect the erroneous characters. On the other hand, the corrector module utilizes the refined mask from the purificator module,
which incorporates the output of the detector, to generate appropriate corrections. The entire procedure can be mathematically
represented as follows:

𝑌 = C((𝑋𝑇
𝐼 ,P((𝑋

𝑇
𝐼 ,D(𝑋𝑇

𝐼 ;𝑊𝐷));𝑊𝑃));𝑊𝐶) (1)

5 https://www.facebook.com/
7

https://www.facebook.com/

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

s

t
a
a
c

d
S
p
i
e
b
i
c
c

4

a

Fig. 2. (Left) The detector network of DPCSpell which takes an input sequence as input and makes an initial attempt to detect the erroneous portions of the
equence. (Middle) The purificator network which takes the actual input sequence along with the detected sequence from the detector to further purify the

erroneous fragments of the sequence. (Right) The corrector network which combines actual input with the purified sequence from the purificator to generate
the correction.

Table 2
Comparison between the working mechanism of direct approaches and our
proposed DPCSpell.

4.3. Motivations

The recent emergence of NLP and deep learning has achieved astonishing success in spelling error correction. Currently, state-of-
he-art spell checkers of different resource-constrained languages leverage seq2seq models and employ a direct correction approach,
s exemplified in Fig. 1(a). However, these methods are end-to-end in nature and exhibit enormous false alarm rates, as they correct
ll the characters of the sequence regardless of its correctness. This problem is exacerbated when just a tiny percentage of wrong
haracters occur in the entire sequence, which appears to be a general trend, as evidenced in Table 2.

DCSpell (Li et al., 2021) addresses this problem by presenting a transformer-based detector-corrector framework that first
etermines whether a character is erroneous or not before correcting it, which we found rather inefficacious in correction generation.
ince the correction generation largely relies on the detected erroneous character sequence, it often fails to precisely identify the
ositions of erroneous characters which essentially misguides the corrector network. We resolve this by introducing a purificator
n between the detector and corrector module that further cleanses the detected erroneous characters. Our proposed DPCSpell
liminates the drawbacks associated with direct correction approaches as it only corrects the wrong characters in the sequence
y detecting the erroneous portions in the input sequence beforehand. The addition of the purificator module delineates a lucid
mprovement over the detector-corrector framework. Furthermore, DPCSpell converges much quicker than both the detector-
orrector and direct correction strategies. Fig. 1(b) depicts our proposed DPCSpell, consisting of the detector, purificator, and
orrector modules.

.4. Structure of DPCSpell

The building blocks of the transformer used in the detector, purificator, and corrector network is delineated in Fig. 3. The encoder
nd decoder of the transformer comprised of a stack of five residual encoding and decoding blocks respectively.
8

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

o
w

Fig. 3. (Left) The encoding component of the transformer is a stack of identical encoders, which is responsible for mapping an input sequence to a sequence
f dense vector representations. (Right) The decoding module which is also a stack of identical decoders. It accepts the encoded output from the encoder along
ith the decoder output from the previous time step to generate a prediction sequence.

Encoder: The encoder takes the input sequence, 𝑋𝐼 = {𝑋𝐼1 , 𝑋𝐼2 ,… , 𝑋𝐼𝑁 }, and compresses it into a sequence of context vectors,
𝑍 = {𝑍1, 𝑍2,… , 𝑍𝐾}, which capture the information from all tokens in 𝑋𝐼 , including their positions. To achieve this, each token
𝑋𝐼𝑖 ∈ 𝑋𝐼 is first passed through an embedding layer, and then the positional encoding is added elementwise. This results in
integrated embeddings that are ready to be processed by the multi-head attention layer. The multi-head attention layer incorporates
ℎ different attentions calculated from ℎ heads in parallel. The self-attention can be seen as a combination of queries, keys, and values,
where a scalar self-attention score is calculated by taking the dot product between the query and the key. The score is then divided
by the square root of the size of the key vector and passed through a softmax layer. The resulting softmax score is then multiplied
by the value vector, generating an attention vector for a specific head. The formula for calculating the multi-head attention is as
follows (Vaswani et al., 2017).

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻𝑒𝑎𝑑1,𝐻𝑒𝑎𝑑2,… ,𝐻𝑒𝑎𝑑ℎ)𝑊 𝑜 (2)

𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖) (3)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 (4)

Here, 𝑄, 𝐾, and 𝑉 refer to query, key, and value respectively and 𝑊 𝑗
𝑖 is their corresponding weight matrix. And 𝑑𝑘 denotes the

dimension of the key vectors.
9

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

r
t

4

i
𝑋
a

Next, the responses of multi-head attention layer is then passed through position-wise feed-forward neural networks incorporating
esidual connections from input of the layer. The output of feed-forward layer is further normalized which is then ready to pass
hrough next encoder block, except for the final encoding block which outputs a sequence of context vectors 𝑍 = {𝑍1, 𝑍2,… , 𝑍𝑁}

for the decoder.
Decoder: The decoder (𝛿) is analogous to the encoder (𝜉) but with two distinct multi-head attention layers: self-attention

(masked) and encoder-attention. In the self-attention layer, the decoder representation serves as the query, while the encoder
representations are used as the key and value in the standard multi-head attention layer for encoder-attention. The decoder
representation from the final decoding block is then fed through a linear layer, followed by a softmax activation function, generating
the output sequence 𝑌 = {𝑌1, 𝑌2,… , 𝑌𝑀}.

4.4.1. Detector network
Given an input sequence 𝑋𝐼 = {𝑋𝐼1 , 𝑋𝐼2 , 𝑋𝐼𝑁 }, the detector aims to identify and label potential erroneous characters. It returns

a labeled sequence 𝑋𝐷 = D(𝑋𝐼) = {𝑋𝐷1
, 𝑋𝐷2

, 𝑋𝐷𝑁
}, where the positions of potential erroneous characters are masked. If the 𝑖th

character 𝑋𝐼𝑖 ∈ 𝑋𝐼 is deemed erroneous, it is replaced with a special token called [MASK] (𝑋𝐷𝑖
= [𝑀𝐴𝑆𝐾]). Otherwise, it copies

the corresponding character from the input sequence (𝑋𝐷𝑖
= 𝑋𝐼𝑖 , as shown in Eq. (5)). The detected erroneous sequence 𝑋𝐷 is

generated by passing the decoded representation of 𝑋𝐼 through a linear layer, F𝑑 .

𝑋𝐷𝑖
=

{

[𝑀𝐴𝑆𝐾], if 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(F𝑑 (𝛿𝑑 (𝜉𝑑 (𝑋𝐼𝑖)))) = 𝑖𝑛𝑑𝑒𝑥([𝑀𝐴𝑆𝐾])
𝑋𝐼𝑖 , otherwise

(5)

We use the categorical cross-entropy loss function to measure the goodness of fit of our method which is demonstrated in Eq. (6)
and adam optimizer with a constant learning rate to minimize the loss.

𝐶𝐸D = −
𝑁
∑

𝑖
𝑋𝐷𝑎𝑐𝑡𝑢𝑎𝑙

𝑙𝑜𝑔(D(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(F𝑑 (𝛿𝑑 (𝜉𝑑 (𝑋𝐼𝑖)))))) (6)

Where 𝑋𝐷𝑎𝑐𝑡𝑢𝑎𝑙
is the ground truth sequence of 𝑋𝐼 and D(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(F𝑑 (𝛿𝑑 (𝜉𝑑 (𝑋𝐼𝑖))))) is the detected sequence from the detector, D.

.4.2. Purificator network
The purificator module is identical to the detector except for the input sequence. It concatenates the detected sequence 𝑋𝐷 with

nitial input 𝑋𝐼 such that 𝑋𝐼𝐷 = {⟨SEP⟩ +𝑋𝐼 + ⟨SEP⟩ +𝑋𝐷 + ⟨SEP⟩}. It further purifies the detected erroneous character sequence
𝐷 and returns an updated labeled sequence 𝑋𝑃 = P(𝑋𝐼 , 𝑋𝐷) = {𝑋𝐷1

, 𝑋𝐷2
,… , 𝑋𝐷𝑁

} from 𝑋𝐼𝐷. Mathematically 𝑋𝑃 can be defined
s follows:

𝑋𝑃𝑖 =

{

[𝑀𝐴𝑆𝐾], if 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(F𝑝(𝛿𝑝(𝜉𝑝(𝑋𝐼𝑖 , 𝑋𝐷𝑖
)))) = 𝑖𝑛𝑑𝑒𝑥([𝑀𝐴𝑆𝐾])

𝑋𝐼𝑖 , otherwise
(7)

Similar to detector, here we use cross-entropy loss function and adam optimizer with an unvarying learning rate.

𝐶𝐸P = −
𝑁
∑

𝑖
𝑋𝐷𝑎𝑐𝑡𝑢𝑎𝑙

𝑙𝑜𝑔(P(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(F𝑝(𝛿𝑝(𝜉𝑝(𝑋𝐼𝑖 , 𝑋𝐷)))))) (8)

4.4.3. Corrector network
The corrector module takes an amalgamation of the initial input sequence 𝑋𝐼 , as well as the detected and further purified

masks 𝑋𝑃 from the purificator, as input. It generates the corrections 𝑌 = C(𝑋𝐼 , 𝑋𝐼𝑃) = {𝑌1, 𝑌2,… , 𝑌𝑁}. Similar to the purificator,
it concatenates 𝑋𝐼 and 𝑋𝑃 in the form of 𝑋𝐼𝑃 = {⟨SEP⟩ + 𝑋𝐼 + ⟨SEP⟩ + 𝑋𝑃 + ⟨SEP⟩}. The vocabulary of corrector is denoted as
𝑉 = {𝑉1, 𝑉2,… , 𝑉𝑁} where 𝑉𝑖 is the 𝑖th character of a particular language. For each character position 𝑋𝐼𝑃 𝑖

∈ 𝑋𝐼𝑃 with the [𝑀𝐴𝑆𝐾]
token, the corrector (C(.)) predicts a character 𝑌𝑖 ∈ 𝑉 . The encoder (𝜉𝑐 (.)) of the corrector network generates a sequence of context
vectors 𝑍C = {𝑍C1

, 𝑍C2
,… , 𝑍C𝑁

} for each character 𝑍𝐼𝑃 𝑖
∈ 𝑍𝐼𝑃 . The encoder representation (ER) is then passed through the

decoder (𝛿𝑐 (.)), and the decoder representation (DR) is processed through a fully connected layer F𝑐 to generate the correction 𝑌 .

𝐸𝑅 = 𝜉𝑐 (𝑋𝐼𝑃) (9)

𝐷𝑅 = 𝛿𝑐 (𝐸𝑅) (10)

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(F(𝐷𝑅;𝐸𝑁)) (11)

Here we employ the cross-entropy loss function to measure the goodness of fit of our corrector network which is denoted in
equation-(12) and adam optimizer with a steady learning rate to minimize the loss.

𝐶𝐸C = −
𝑁
∑

𝑖
𝑋𝐼𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑜𝑔(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(F𝑐 (𝛿𝑐 (𝜉𝑐 (𝑋𝐼𝑖 , 𝑋𝑃))))) (12)

Where 𝑋𝐼𝑎𝑐𝑡𝑢𝑎𝑙 is the gold standard annotation of 𝑋𝐼 and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(F𝑐 (𝛿𝑐 (𝜉𝑐 (𝑋𝐼𝑖 , 𝑋𝑃)))) denotes the generated correction from the
10

corrector network C.

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

F
m
i
d
t

5

5

a

t

o

i

5

a
t
H
t
e
T
t
r

5

Table 3
Instances from the Bangla SEC corpus.

5. Experimental analysis

We adopt a standard train-validation-test set approach, widely used for the spelling error correction task (Zhang et al., 2020;
arra et al., 2014; Xie et al., 2023). By dividing the data into three sets – training, validation, and test – we prevent the model from
erely memorizing the training examples, enabling a better assessment of its ability to generalize. The segregation of these sets

s paramount, guaranteeing a dependable appraisal of the model’s prowess on previously unseen data. Moreover, when comparing
ifferent models, using the same test set is pivotal to ensure fair and accurate comparisons. This rigorous methodology enhances
he reliability of our spelling error correction method.

.1. Datasets

.1.1. Bangla
We use our large-scale parallel corpus for Bangla spelling error correction. To do so, we split our corpus into training, validation,

nd test sets for further use. However, the instances of our Bangla SEC corpus have been exemplified in Table 3.
Training Set The training set accounts for 80% of the data in the corpus. We take 80% of the data from each individual error

ype to prevent the corpus from being biased. The training set comprises 1,104,531 correct-erroneous word pairs.
Validation Set We keep only 5% of the data from the corpus in the validation set. Similar to the training set, we consider 5%

f each error category to construct this set as well. As a result, the validation set contains 69,034 instances.
Test Set It is comprised of 15% errors of all 14 error types, as we did in the training and validation sets. It accounts for 207,099

nstances of the corpus.

.1.2. Hindi and Telugu
We utilize the Hindi and Telugu parallel corpora used in Etoori et al. (2018) along with their training and test sets. The training

nd test sets of the Hindi corpus contain 90,489 and 9,049 instances, respectively. Likewise, there are 64,518 training and 7727
est pairs in the Telugu corpus.
indi* We enhance the corpus by introducing nine types of errors including cognitive, visual (single), typographical insertion,

ypographical deletion, typographical transposition, run-on, split-word left, split-word right, split-word random, and split-word both
rrors. The enriched training and test sets include 177,038 and 19,660 instances, respectively.
elugu* We bring forward variety in the Telugu corpus by incorporating those nine errors that were previously introduced in
he Hindi corpus. Consequently, the enhanced training and test set contain 214,828 and 20,279 correct-erroneous word pairs,
espectively (see Table 4).

.2. Baselines

We compare our method with seven baselines including several state-of-the-art methods of different resource-scarce languages.

• RuleBased (Hossain et al., 2021): This method utilizes Double Metaphone and Edit Distance algorithms for Bangla spelling
11

error detection and correction.

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

5

p
i
i

5

F
w

Table 4
Examples from the enhanced Hindi (left) and Telugu (right) SEC corpus.

• GRUSeq2Seq: Bahdanau et al. (2014) enriches the conventional RNN encoder–decoder architecture, by allowing the model
to focus only on the pertinent details from the encoder while generating a target word, for neural machine translation,
where GRU is employed in both the encoder and decoder. We make it a baseline for Bangla spelling error correction through
Bangla-to-Bangla translation.

• LSTMSeq2Seq (Etoori et al., 2018): This method brings forward a character level seq2seq model utilizing LSTM cells in both
the encoder and decoder for spelling error correction of two resource-scarce Indic languages namely Hindi and Telugu.

• ConvSeq2Seq: Gehring et al. (2017) presents a fully convolutional sequence-to-sequence architecture with an attention module
for neural machine translation. We consider it as another baseline to rectify Bangla spelling errors through Bangla-to-Bangla
translation.

• VocabLearner (Rahman, 2021): This method introduces a word-level vocabulary learner for Bangla spelling error correction
by employing a 1D CNN-based architecture named Coordinated CNN (CoCNN).

• DTransformer (Kuznetsov and Urdiales, 2021): This method utilizes a denoising autoencoder transformer for spelling error
correction, on a short input string, for four resource-limited languages. The autoencoder is employed for synthetic error
annexation, whereas the transformer is responsible for error rectification.

• DCSpell (Li et al., 2021): This method initiates a transformer-based detector-corrector framework, where a character is detected
first whether it is erroneous or not before being corrected, to rectify Chinese spelling errors.

5.3. Performance evaluation

We evaluate the performance of our method using Precision, Recall, F-scores, Exact Match, and Modified Accuracy.

.3.1. Precision, recall, and F𝛽-score
Precision denotes the credibility of a model by signifying the quality of its positive predictions, whereas recall quantifies the

roportion of actual positives precisely identified by the model. Precision is beneficial in such situations when a False Positive (FP)
s more of a concern than a False Negative (FN). In contrast, recall is a useful metric in such scenarios where False Negative (FN)
s highly expensive. The formulas for calculating the precision and recall are as follows.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑𝑛

𝑖=1|𝑔𝑖 ∪ 𝑒𝑖|
∑𝑛

𝑖=1|𝑒𝑖|
(13)

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑𝑛

𝑖=1|𝑔𝑖 ∪ 𝑒𝑖|
∑𝑛

𝑖=1|𝑔𝑖|
(14)

where 𝑔𝑖 and 𝑒𝑖 denote gold-standard targets and model’s predicted levels for 𝑖th word such that 𝑊𝑖 ∈ 𝑊 . The intersection for
gold-standard targets and model’s predicted levels for a given word 𝑀𝑖 ∈ 𝑀 is considered as,

𝑔𝑖 ∪ 𝑒𝑖 = {𝑒 ∈ 𝑒𝑖 | ∃𝑔 ∈ 𝑔𝑖, 𝑚𝑎𝑡𝑐ℎ(𝑔, 𝑒)} (15)

F-measure is the harmonic mean of precision and recall. It is required for comparing different models with high recall and low
precision scores. We calculate the F𝛽-scores for 𝛽 values of 1 and 0.5. The formula for calculating F𝛽-score is as follows.

𝐹𝛽 𝑠𝑐𝑜𝑟𝑒 =
(1 + 𝛽2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
(𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙

(16)

Eq. (16): 𝛽 = 1 (F1-score) and 𝛽 = 0.5 (F0.5-score) denote equal weighting of precision and recall, and emphasize on precision
while calculating the score

.3.2. Exact match (EM)
It delineates the efficacy of the model across all classes like accuracy (= (𝑇𝑃 + 𝑇𝑁)∕(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)), where TP, TN, FP,

N refers to True Positive, True Negative, False Positive, and False Negative. The output of the model (𝜇(𝑥)) is deemed to be correct
hen the prediction (𝑦̂) exactly matches the label (𝑦). The equation is as follows.

𝑓 (𝑥) =

{

1, if 𝑦̂ = 𝜇(𝑥) = 𝑦
(17)
12

0, otherwise

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

p

Table 5
The comparison of the quantitative outcomes of our proposed DPCSpell with other methods in the Bangla SEC task.

Method EM MA PR RE F1 F0.5

RuleBased (Hossain et al., 2021) 55.71% – 0.5620 0.5571 0.5578 0.5598
GRUSeq2Seq (Bahdanau et al., 2014) 75.56% 76.56% 0.8072 0.7556 0.7726 0.7899
ConvSeq2Seq (Gehring et al., 2017) 78.85% 80.10% 0.8452 0.7885 0.8259 0.8259
VocabLearner (Rahman, 2021) 22.47% – − – − –
DTransformer (Kuznetsov and Urdiales, 2021) 90.44% 91.12% 0.9061 0.9044 0.9047 0.9056
DCSpell (Li et al., 2021) 84.23% 85.07% 0.8458 0.8423 0.8434 0.8446
DPCSpell 94.78% 95.16% 0.9487 0.9478 0.948 0.9483

EM is the ratio of the number of correct predictions and total instances. The higher the EM score, the better the model
erformance. The formula for calculating the EM score is a follows.

𝐸𝑀 =
∑𝑁

1 𝑓 (𝑥)
𝑁

(18)

Eq. (18): where ∑𝑁
1 𝑓 (𝑥) is the number of correct prediction, and 𝑁 refers to the number of instances

5.3.3. Modified accuracy (MA)
We calculate the accuracy within the top-K predictions and call it Modified Accuracy. Unlike accuracy, in our case Exact Match,

it elucidates the effectiveness of a model over corpora. The prediction is considered positive if any outcome within top-K can be
found in the desired corpus. The formula to evaluate a prediction whether it is positive or not is as follows.

𝑔(𝑥) =

{

1, if 𝑦̂ = 𝜇(𝑥) = 𝑡𝑜𝑝𝐾 𝜖 𝑊
0, otherwise

(19)

MA, similar to EM, is calculated as the ratio of total positive predictions and instances of the corpus. A higher MA score denotes
the credible performance of the model. The formula for calculating the MA score is a follows.

𝑀𝐴 =
∑𝑁

1 𝑔(𝑥)
𝑁

(20)

Eq. (20): where ∑𝑁
1 𝑔(𝑥) and 𝑁 denote number of positive predictions and instances in the corpus

5.4. Hyperparameters

The encoder and decoder of our detector, purificator, and corrector network is a combination of 5 encoding and decoding layers
respectively. Moreover, we use 8 attention heads in both encoder and decoder. A hidden size of 128 is employed in the encoder
and decoder while we kept the pf dimension two-fold of the hidden dimension. Next, a dropout ratio of 10% has been employed
in the encoder and decoder in all three modules to avoid overfitting issues. Likewise, we clip the gradient at 1 to eliminate the
drawback of exploding gradient. Finally, we use a constant learning rate of 5𝑒− 4 in adam optimizer to minimize the loss and train
the detector, purificator, and corrector network for 100 epochs respectively.

5.5. Main results

5.5.1. Spelling error correction for Bangla language
We compare the performances of several state-of-the-art methods and our constructed baselines with our proposed DPCSpell for

rectifying Bangla spelling errors. To ensure a fair comparison, we train, validate, and test these methods on our parallel corpus. The
empirical outcome of these approaches can be found in Table 5.

Our proposed DPCSpell outperforms all the listed methods in Table 5 by a convincing margin. It outperforms RuleBase (Hossain
et al., 2021), GRUSeq2Seq (Bahdanau et al., 2014), and ConvSeq2Seq (Gehring et al., 2017) by a higher Exact Match (EM) score
of 39.07%, 19.22%, and 15.93%, respectively. Likewise, it outperforms DCSpell (Li et al., 2021) by an EM score of 10.55%,
a Modified Accuracy (MA) score of 10.09%, a precision (PR) score of 0.1029, a recall (RE) score of 0.1055, an F1 score of
0.1046, and an F0.5 score of 0.1037. Besides, it suppresses the effectiveness of the recent Bangla spelling error correction method
named VocabLearner (Rahman, 2021) by accomplishing a 72.31% higher EM score. Moreover, it improves the performance of
DTransformer (Kuznetsov and Urdiales, 2021), which is the second best method to ours, by attaining higher EM, MA, PR, RE, F1,
and F0.5 scores of 4.43%, 4.04%, 4.26%, 4.34%, 4.33%, and 4.27%, respectively.

In addition, Table 5 depicts a thorough comparison between rule-base, GRU-base, convolution-based, and transformer-based
methods. The rule-based method performs the worst followed by GRU-based and convolution-based methods. However, convolution-
based method slightly improved the performance of GRU-based methods. In contrast, transformer-based methods show promising
result. We compare, one-stage, two-stage, and three-stage transformer-based methods which are DTransformer, DCSpell, and
DPCSpell, respectively. The empirical outcome delineates that two-stage DCSpell performs worst among these three, where our
13

proposed three-stage DPCSpell performs the best.

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

t
i
e
t

m
t
i
D
a

t

M
i

f
p
B

5

m

Table 6
The comparison of the quantitative outcomes of our proposed DPCSpell in individual error types of the Bangla SEC with other competitive methods.

Error type DTransformer DCSpell DPCSpell

EM MA EM MA EM MA

Homonym error 11.38% 73.98% 11.38% 67.04% 17.07% 72.36%
Typo deletion 90.92% 91.36% 79.59% 80.02% 94.07% 94.38%
Typo substituition (Bijoy) 91.80% 91.95% 85.98% 86.26% 95.55% 95.67%
Typo substituition (Avro) 93.35% 93.50% 89.40% 90.09% 97.55% 97.63%
Visual error (Single) 79.98% 80.96% 77.48% 78.38% 90.85% 91.61%
Cognitive error 90.21% 90.73% 83.12% 83.58% 94.79% 95.25%
Typo transposition 87.43% 89.01% 81.58% 82.32% 93.35% 94.70%
Visual error (Combined) 93.27% 82.14% 88.50% 76.97% 96.21% 82.13%
Run-on error 88.32% 89.37% 80.71% 83.34% 90.09% 90.75%
Typo insertion 97.16% 97.27% 91.66% 92.73% 99.68% 99.72%
Split-word error (Left) 92.64% 94.63% 86.65% 88.13% 95.38% 97.64%
Split-word error (Right) 93.88% 95.26% 80.00% 81.09% 97.71% 98.43%
Split-word error (Random) 89.80% 92.74% 82.85% 85.29% 93.96% 95.12%
Split-word error (both) 93.59% 95.10% 86.32% 87.64% 96.41% 97.36%

Weighted average 90.44% 91.12% 84.23% 85.07% 94.78% 95.16%

5.5.2. Bangla spelling error analysis
To examine the effectiveness of our method in Bangla spelling error correction, we compare the performance of individual error

ypes with two competitive methods in Table 6. It outperforms both DTransformer and DCSpell by a significant EM score in all
ndividual error types. Likewise, it exceeds the listed methods in terms of MA in all individual error categories, except homonym
rror where DTransformer achieves the highest score. However, it performs poorly in the case of correcting homonym errors due
o the insufficient number of training instances.

For further analysis, we compare some rectification findings of these methods on the test data in Table 7 where the tick and cross
arks denote whether the prediction of the method is correct or not. We randomly choose six out of 14 error types to demonstrate

he qualitative outcomes of DTransformer, DCSpell, and DPCSpell. The empirical outcomes of our DPCSpell validate its effectiveness
n correcting Bangla spelling errors. Especially, our method is proficient in rectifying all types of errors, whereas DTransformer and
CSpell suffer from correcting words with longer sequences and combined characters. However, the mistakes made by our method
re also quite relevant. In the case of homonym errors, even though it fails to generate the actual correction () of the erroneous

word (), the prediction () itself is a correct word and makes complete sense. In another example, our DPCSpell generates
for the erroneous word , whereas the actual correction is . Once again, even if the correction is a valid word, it

fails to generate the actual correct word due to imprecise mask prediction. The detector module predicted the mask as and
he purificator module further purified it to , where the actual mask should be , consequently leading to an imprecise

correction.

5.5.3. Spelling error correction for resource-scarce Indic languages
We compare the performance of our method with three other tactics including LSTMSeq2Seq, DTransformer, and DCSpell in

two low-resource Indic languages namely Hindi and Telugu, which are Sanskrit-oriented and follow left-to-right typing script like
Bangla (Rahman, 2021). The performance of these methods can be found in Table 8. Despite the fact that DTransformer performs
incredibly well in both languages, our proposed DPCSpell achieves competitive performance with it. Most importantly, we notice
that our method starts outperforming other approaches when it has a sufficient amount of training data. Initially, it was the worst
performing method for Hindi and Telugu when training on a tiny corpus of Hindi and Telugu respectively from Etoori et al.
(2018). Afterwards, we enhance these corpora by incorporating nine types of spelling errors, utilizing our corpus creation tactic.
Consequently, it outperforms LSTMSeq2Seq and DCSpell for both Hindi and Telugu SEC task. It suppresses the performance of
DCSpell for Hindi SEC by EM score of 1.13%, and PR, RE, F1 and F0.5 scores of 8.5 × 10−3, 1.13 × 10−2, 1.39 × 10−2, 6.2 × 10−3.

eanwhile, it attains more competitive performance with DTransformer while outperforms DCSpell for Telugu SEC by improving
ts prior EM, PR, RE, F1, and F0.5 scores by 1.83%, 5.84 × 10−2, 1.83 × 10−2, 2.39 × 10−2, 3.82 × 10−2, respectively.

In comparison to our method’s performance on Bangla where DPCSpell outperforms all the listed methods including DTrans-
ormer, it appears to suppress the performance of other methods on large-scale corpora as it shows a lucid improvement in its
erformance on the enhanced corpora. Since the enhanced Hindi and Telugu corpus is 6.54% and 5.64% times smaller than the
angla corpus, it will perform even better in the Hindi and Telugu languages for large enough corpora.

.6. Ablation study

In this subsection, we investigate the impact of several DPCSpell components including the effect of the detector and purification
14

odule, masked characters, and beam search decoding for Bangla spelling error correction.

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

r
m
m

Table 7
Comparison of our proposed DPCSpell with other competitive methods in relation to the
qualitative result of Bangla SEC task.

Table 8
The comparison of the quantitative outcomes of our proposed DPCSpell with other competitive methods for resource-scarce Indic languages such as Hindi and
Telugu, where ∗ indicates the enhanced corpus.

Method EM PR RE F1 F0.5 Corpus
Lang.

LSTMSeq2Seq (Etoori et al., 2018) 85.40% – − – − Hindi
DTransformer (Kuznetsov and Urdiales, 2021) 90.43% 0.906 0.9043 0.9066 0.9075 Hindi
DCSpell (Li et al., 2021) 82.18% 0.8724 0.8218 0.8386 0.8562 Hindi
DPCSpell 78.64% 0.8431 0.7864 0.8207 0.8238 Hindi
DTransformer (Kuznetsov and Urdiales, 2021) 96.71% 0.976 0.9671 0.9663 0.976 Hindi*
DCSpell (Li et al., 2021) 85.80% 0.9588 0.8580 0.8912 0.9248 Hindi*
DPCSpell 86.93% 0.9673 0.8693 0.9051 0.9310 Hindi*

LSTMSeq2Seq (Etoori et al., 2018) 89.30% – − – − Telugu
DTransformer (Kuznetsov and Urdiales, 2021) 95.66% 0.9587 0.9566 0.9585 0.9593 Telugu
DCSpell (Li et al., 2021) 91.05% 0.9225 0.9105 0.9203 0.9256 Telugu
DPCSpell 88.58% 0.9058 0.8858 0.9008 0.9066 Telugu

DTransformer (Kuznetsov and Urdiales, 2021) 98.88% .9872 .9888 .9899 .991 Telugu*
DCSpell (Li et al., 2021) 89.91% 0.9629 0.8991 0.9209 0.9422 Telugu*
DPCSpell 90.41% 0.9642 0.9041 0.9247 0.9448 Telugu*

Table 9
Impact of different components of our proposed DPCSpell on the performance of the Bangla SEC task.

Method Mask Correction

EM EM PR RE F1 F0.5 MA

C – 90.44% 0.9061 0.9044 0.9047 0.9056 91.12%
D +C 88.54% 84.23% 0.8458 0.8423 0.8434 0.8446 85.07%
D +P +C 96.86% 94.78% 0.9487 0.9478 0.948 0.9483 95.16%

5.6.1. Effect of the detector network

The detector module identifies the position of the erroneous characters in the input word and replaces them with a mask. As a
esult, the corrector module can only rectify the erroneous characters rather than the entire sequence. Furthermore, the corrector
odule becomes heavily reliant on the detector module’s efficacy for the same reason. From Table 9, we observe that the corrector
odule without the detector (C), which is analogous to the DTransformer (Kuznetsov and Urdiales, 2021), performs better than the
15

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

i
e
e
a
r

5

D
I
v
d

5

i
a
t
2
a
H
a
d

6

a
p
c
t
w
a
i

Fig. 4. Effect of purified masked characters from the purificator network.

detector and corrector modules together (D + C), which is similar to the DCSpell (Li et al., 2021), because the detector (D) fails to
precisely identify the erroneous characters of the word which consequently misleads the corrector (C) and degrades its performance.

5.6.2. Effect of the purificator network
The purificator (P) detects the erroneous letters in a word by further purifying the masked output of the detector (D), which in

turn allows the corrector (C) to amend the erroneous portion only rather than the whole word. Table 9 reveals that the purificator
mproves the EM score of the detector module by 8.32%. It detects the masks with an EM score of 96.86% which indicates its
ffectiveness in mask detection. As a consequence, the corrector network’s performance is significantly improved. The purificator’s
fficacy improves the corrector’s EM score by 10.55% and helps to outperform previous methods by a convincing margin. It achieves
n EM score of 94.78% in correction generation, whereas it was 84.23% and 90.44% in corrector with and without detector model,
espectively.

.6.3. Effect of masked characters
Fig. 4 depicts how the model converges relatively faster due to precisely masking the erroneous characters. The loss of the

etector+Purificator+Corrector is significantly reduced between 5 and 15 epochs, whilst other variants exhibited gradual decrement.
t signifies the method’s aptitude to generate accurate correction in a short time frame. It takes approximately half of the time of the
ariant named corrector to reach the lowest value of the loss. Likewise, it hits the lowest point three times faster than the remaining
etector+corrector variant.

.7. Drawbacks of DPCSpell

Even though our proposed DPCSpell gives promising performance by outperforming several methods, it suffers from two minor
ssues. Firstly, it has a large parameter size as compared to other SEC methods. Each of the transformer-based detector, purificator,
nd corrector networks has 1,696,197 trainable parameters. As a result, it contains nearly 150% and 300% more trainable parameters
han the DCSpell and DTransformer, respectively. Consequently, it requires almost twice and thrice as long as DCSpell (Li et al.,
021) and DTransformer (Kuznetsov and Urdiales, 2021) to make a correction. Secondly, it is heavily data-dependent to produce
credible result. The experimental findings in Table 8 delineate how our method begins to show its efficacy for a larger corpus.
owever, in the case of immense parameter size, the advance in technology helps overcome the hurdles in training a model with
parameter size of approximately 5M, which is not even end-to-end. Regarding the data dependencies, we propose a method for

eveloping a large-scale corpus that is effective in resolving the data dependency issue.

. Conclusion

The spelling error rectification task becomes challenging due to the visual and phonological features of characters which give
mbiguous information about the context and essentially mislead the model. To solve the problem, we proposed a detector-
urificator-corrector framework DPCSpell based on denoising transformers that detects whether a letter is appropriate or not before
orrecting it. The detector network is used to identify the erroneous characters and mask them, while the purificator further purifies
he masked output. The corrector module is responsible for correction generation. We divided the SEC task into three sub-tasks,
hich significantly enhanced overall performance. Consequently, it became the new state-of-the-art method for Bangla SEC. In
ddition, we presented a new approach for creating a large-scale parallel corpus for SEC of any left-to-right scripted language which
n turn resolved the resource limitation issue. A large-scale parallel corpus for Bangla SEC is developed using our method and made
16

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

t

publicly available, making Bangla a resourceful language for the task. Furthermore, we observed that many existing methods rely
on private corpora and withhold their codes, hindering reproducibility. So, we have made all our codes publicly available, fostering
a reproducible baseline for the task. In the future, we will make our method less data-dependent with the help of meta-learning.

CRediT authorship contribution statement

Mehedi Hasan Bijoy: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Visualiza-
ion, Writing – original draft, Writing – review & editing. Nahid Hossain: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Validation, Visualization, Writing – original draft, Writing – review & editing, Funding acquisition.
Salekul Islam: Project administration, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.
Swakkhar Shatabda: Conceptualization, Project administration, Writing – review & editing, Methodology, Supervision, Validation,
Visualization, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This research is funded by Institute of Advanced Research (Grant No. UIU/IAR/02/2021/SE/22), United International University,
Bangladesh.

References

Abdullah, Md Munshi, Islam, Md Zahurul, Khan, Mumit, 2007. Error-tolerant finite-state recognizer and string pattern similarity based spelling-checker for Bangla.
In: Proceeding of 5th International Conference on Natural Language Processing. ICON.

Ahamed, Istiak, Jahan, Maliha, Tasnim, Zarin, Karim, Tajbia, Reza, S.M. Salim, Hossain, Dilshad Ara, 2021. Spell corrector for Bangla language using Norvig’s
algorithm and Jaro-Winkler distance. Bull. Electr. Eng. Inform. 10 (4), 1997–2005.

Ahmadzade, Ahmad, Malekzadeh, Saber, 2021. Spell correction for Azerbaijani language using deep neural networks. arXiv preprint arXiv:2102.03218.
Aziz, Romila, Anwar, Muhammad Waqas, 2019. Urdu spell checker: A scarce resource language. In: International Conference on Intelligent Technologies and

Applications. Springer, pp. 471–483.
Bahdanau, Dzmitry, Cho, Kyunghyun, Bengio, Yoshua, 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
Bijoy, Mehedi Hasan, Hasan, Nirob, Tushar, Md Tahrim Faroque, Rahmany, Shafin, 2021. Image tagging by fine-tuning class semantics using text data from web

scraping. In: 2021 24th International Conference on Computer and Information Technology. ICCIT, IEEE, pp. 1–6.
Das, Amitava, Bandyopadhyay, Sivaji, 2010. Morphological stemming cluster identification for Bangla. Knowl. Sharing Event-1: Task 3.
Debnath, Tanmoy, Sajnin, Sumaiya, Hamid, Md Montaser, 2020. A hybrid approach to design automatic spelling corrector and converter for transliterated Bangla

words. In: 2020 23rd International Conference on Computer and Information Technology. ICCIT, IEEE, pp. 1–6.
Etoori, Pravallika, Chinnakotla, Manoj, Mamidi, Radhika, 2018. Automatic spelling correction for resource-scarce languages using deep learning. In: Proceedings

of ACL 2018, Student Research Workshop. pp. 146–152.
Farra, Noura, Tomeh, Nadi, Rozovskaya, Alla, Habash, Nizar, 2014. Generalized character-level spelling error correction. In: Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). pp. 161–167.
Flor, Michael, Futagi, Yoko, Lopez, Melissa, Mulholland, Matthew, 2015. Patterns of misspellings in L2 and L1 English: A view from the ETS spelling corpus.

Bergen Lang. Linguist. Stud. 6.
Gehring, Jonas, Auli, Michael, Grangier, David, Yarats, Denis, Dauphin, Yann N., 2017. Convolutional sequence to sequence learning. In: International Conference

on Machine Learning. PMLR, pp. 1243–1252.
Gupta, Prabhakar, 2020. A context-sensitive real-time spell checker with language adaptability. In: 2020 IEEE 14th International Conference on Semantic

Computing. ICSC, IEEE, pp. 116–122.
Hasan, H.M. Mahmudul, Islam, Md Adnanul, Hasan, Md Toufique, Hasan, Md Araf, Rumman, Syeda Ibnat, Shakib, Md Najmus, 2020. A spell-checker integrated

machine learning based solution for speech to text conversion. In: 2020 Third International Conference on Smart Systems and Inventive Technology. ICSSIT,
IEEE, pp. 1124–1130.

Hosna, Asmaul, Khatun, Ayesha, Islam, Md Jahidul, Mahin, Md, Sultana, Babe, Kabir, Sumaiya, 2017. Word clustering of Bangla sentences using higher order
n-gram language model. GUB J. Sci. Eng. (GUBJSE) 4 (1), 76–84.

Hossain, Nahid, Islam, Salekul, Huda, Mohammad Nurul, 2021. Development of Bangla spell and grammar checkers: Resource creation and evaluation. IEEE
Access 9, 141079–141097.

Islam, Muhammad Ifte Khairul, Meem, Rahnuma Islam, Kasem, Faisal Bin Abul, Rakshit, Aniruddha, Habib, Md Tarek, 2019. Bangla spell checking and correction
using edit distance. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology. ICASERT, IEEE, pp. 1–4.

Islam, Sadidul, Sarkar, Mst Farhana, Hussain, Towhid, Hasan, Md Mehedi, Farid, Dewan Md, Shatabda, Swakkhar, 2018. Bangla sentence correction using deep
neural network based sequence to sequence learning. In: 2018 21st International Conference of Computer and Information Technology. ICCIT, IEEE, pp. 1–6.

Jain, Amita, Jain, Minni, Jain, Goonjan, Tayal, Devendra K., 2018. ‘‘UTTAM’’ an efficient spelling correction system for hindi language based on supervised
learning. ACM Trans. Asian Low-Resourc. Lang. Inf. Process. (TALLIP) 18 (1), 1–26.

Kaur, Gurjit, Kaur, Kamaldeep, Singh, Parminder, 2019. Spell checker for Punjabi language using deep neural network. In: 2019 5th International Conference
on Advanced Computing & Communication Systems. ICACCS, IEEE, pp. 147–151.
17

http://refhub.elsevier.com/S0885-2308(24)00086-X/sb1
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb1
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb1
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb2
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb2
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb2
http://arxiv.org/abs/2102.03218
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb4
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb4
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb4
http://arxiv.org/abs/1409.0473
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb6
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb6
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb6
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb7
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb8
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb8
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb8
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb9
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb9
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb9
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb10
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb10
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb10
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb11
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb11
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb11
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb12
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb12
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb12
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb13
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb13
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb13
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb14
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb14
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb14
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb14
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb14
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb15
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb15
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb15
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb16
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb16
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb16
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb17
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb17
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb17
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb18
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb18
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb18
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb19
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb19
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb19
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb20
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb20
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb20

Computer Speech & Language 89 (2025) 101703M.H. Bijoy et al.

K
L

L
M

M

N

P

P

R

R

R

R

S

S

S

S

S
S
S

U

U

V

X

Z

Khan, Nur Hossain, Saha, Gonesh Chandra, Sarker, Bappa, Rahman, Md Habibur, 2014. Checking the correctness of Bangla words using n-gram. Int. J. Comput.
Appl. 89 (11).

uznetsov, Alex, Urdiales, Hector, 2021. Spelling correction with denoising transformer. arXiv preprint arXiv:2105.05977.
i, Jing, Wu, Gaosheng, Yin, Dafei, Wang, Haozhao, Wang, Yonggang, 2021. Dcspell: A detector-corrector framework for chinese spelling error correction. In:

Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 1870–1874.
iyanapathirana, Upuli, Gunasinghe, Kaumini, Dias, Gihan, 2021. Sinspell: A comprehensive spelling checker for sinhala. arXiv preprint arXiv:2107.02983.
andal, Prianka, Hossain, B.M. Mainul, 2017. Clustering-based Bangla spell checker. In: 2017 IEEE International Conference on Imaging, Vision & Pattern

Recognition. IcIVPR, IEEE, pp. 1–6.
ittra, Tanni, Nowrin, Sadia, Islam, Linta, Roy, Deepak Chandra, 2019. A bangla spell checking technique to facilitate error correction in text entry environment.

In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology. ICASERT, IEEE, pp. 1–6.
oshin Jahan, Mir, Sarker, Anik, Tanchangya, Shubra, Abu Yousuf, Mohammad, 2021. Bangla real-word error detection and correction using bidirectional lstm

and bigram hybrid model. In: Proceedings of International Conference on Trends in Computational and Cognitive Engineering. Springer, pp. 3–13.
al, Antara, Mallick, Sourav, Pal, Alok Ranjan, 2021. Detection and automatic correction of Bengali misspelled words using N-Gram model. In: 2021 International

Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies. ICAECT, IEEE, pp. 1–5.
atel, Himadri, Patel, Bankim, Lad, Kalpesh, 2021. Jodani: A spell checking and suggesting tool for Gujarati language. In: 2021 11th International Conference

on Cloud Computing, Data Science & Engineering (Confluence). IEEE, pp. 94–99.
ahman, M.D. Haibur, 2018. A System For Checking Spelling, Searching Name & Providing Suggestions in Bangla Word (Ph.D. thesis). United International

University.
ahman, Chowdhury Rafeed, 2021. Neural language modeling for context based word suggestion, sentence completion and spelling correction in Bangla.

Department of computer Science and Engineering, Bangladesh University of Engineering and Technology, http://lib.buet.ac.bd:8080/xmlui/bitstream/handle/
123456789/5991/Full%20Thesis.pdf.

akib, Omor Faruk, Akter, Shahinur, Khan, Md Azim, Das, Amit Kumar, Habibullah, Khan Mohammad, 2019. Bangla word prediction and sentence completion
using GRU: An extended version of RNN on N-gram language model. In: 2019 International Conference on Sustainable Technologies for Industry 4.0. STI,
IEEE, pp. 1–6.

ana, Md Mashod, Sultan, Mohammad Tipu, Mridha, M.F., Khan, Md Eyaseen Arafat, Ahmed, Md Masud, Hamid, Md Abdul, 2018. Detection and correction of
real-word errors in Bangla language. In: 2018 International Conference on Bangla Speech and Language Processing. ICBSLP, IEEE, pp. 1–4.

aha, Sourav, Tabassum, Faria, Saha, Kowshik, Akter, Marjana, 2019. Bangla Spell Checker and Suggestion Generator (Ph.D. thesis). United International
University.

arker, Soumik, Islam, Md Ekramul, Saurav, Jillur Rahman, Nahid, Md Mahadi Hasan, 2020. Word completion and sequence prediction in bangla language
using trie and a hybrid approach of sequential LSTM and N-gram. In: 2020 2nd International Conference on Advanced Information and Communication
Technology. ICAICT, IEEE, pp. 162–167.

harif, Omar, Hoque, Mohammed Moshiul, 2019. Automatic detection of suspicious Bangla text using logistic regression. In: International Conference on Intelligent
Computing & Optimization. Springer, pp. 581–590.

iklósi, Borbála, Novák, Attila, Prószéky, Gábor, 2016. Context-aware correction of spelling errors in Hungarian medical documents. Comput. Speech Lang. 35,
219–233.

ingh, Shashank, Singh, Shailendra, 2021. HINDIA: A deep-learning-based model for spell-checking of Hindi language. Neural Comput. Appl. 33 (8), 3825–3840.
onnadara, Charana, Ranathunga, Surangika, Jayasena, Sanath, 0000. Sinhala spell correction a novel benchmark with neural spell correction.
ooraj, S., Manjusha, K., Anand Kumar, M., Soman, K.P., 2018. Deep learning based spell checker for Malayalam language. J. Intell. Fuzzy Systems 34 (3),

1427–1434.
rmi, Tapashee Tabassum, Jammy, Jasmine Jahan, Ismail, Sabir, 2016. A corpus based unsupervised Bangla word stemming using N-gram language model. In:

2016 5th International Conference on Informatics, Electronics and Vision. ICIEV, IEEE, pp. 824–828.
zZaman, Naushad, Khan, Mumit, 2006. A comprehensive bangla spelling checker. BRAC University. https://dspace.bracu.ac.bd/xmlui/bitstream/handle/10361/

668/A%20comprehensive%20Bangla%20spelling%20checker.pdf.
aswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, Gomez, Aidan N., Kaiser, Łukasz, Polosukhin, Illia, 2017. Attention is all you

need. In: Advances in Neural Information Processing Systems, vol. 30.
ie, Jiaying, Dang, Kai, Liu, Jie, Liang, Enlei, 2023. ABC-fusion: Adapter-based bert-level confusion set fusion approach for Chinese spelling correction. Comput.

Speech Lang. 101540.
hang, Shaohua, Huang, Haoran, Liu, Jicong, Li, Hang, 2020. Spelling error correction with soft-masked BERT. arXiv preprint arXiv:2005.07421.
18

http://refhub.elsevier.com/S0885-2308(24)00086-X/sb21
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb21
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb21
http://arxiv.org/abs/2105.05977
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb23
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb23
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb23
http://arxiv.org/abs/2107.02983
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb25
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb25
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb25
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb26
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb26
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb26
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb27
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb27
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb27
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb28
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb28
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb28
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb29
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb29
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb29
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb30
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb30
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb30
http://lib.buet.ac.bd:8080/xmlui/bitstream/handle/123456789/5991/Full%20Thesis.pdf
http://lib.buet.ac.bd:8080/xmlui/bitstream/handle/123456789/5991/Full%20Thesis.pdf
http://lib.buet.ac.bd:8080/xmlui/bitstream/handle/123456789/5991/Full%20Thesis.pdf
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb32
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb32
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb32
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb32
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb32
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb33
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb33
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb33
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb34
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb34
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb34
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb35
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb35
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb35
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb35
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb35
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb36
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb36
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb36
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb37
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb37
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb37
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb38
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb40
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb40
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb40
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb41
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb41
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb41
https://dspace.bracu.ac.bd/xmlui/bitstream/handle/10361/668/A%20comprehensive%20Bangla%20spelling%20checker.pdf
https://dspace.bracu.ac.bd/xmlui/bitstream/handle/10361/668/A%20comprehensive%20Bangla%20spelling%20checker.pdf
https://dspace.bracu.ac.bd/xmlui/bitstream/handle/10361/668/A%20comprehensive%20Bangla%20spelling%20checker.pdf
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb43
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb43
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb43
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb44
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb44
http://refhub.elsevier.com/S0885-2308(24)00086-X/sb44
http://arxiv.org/abs/2005.07421

	A transformer-based spelling error correction framework for Bangla and resource scarce Indic languages
	Introduction
	Literature Review
	Rule-Based Methods
	Statistical Methods
	Deep-Learning-Based Methods
	Spell Checkers in Resource Scarce Languages

	Corpus Creation
	Word Accumulation
	Error Annexation
	Error Filtration
	Corpus Statistic and Error Percentage Validation

	Methodology
	Problem Formulation
	Overview of DPCSpell
	Motivations
	Structure of DPCSpell
	Detector Network
	Purificator Network
	Corrector Network

	Experimental Analysis
	Datasets
	Bangla
	Hindi and Telugu

	Baselines
	Performance Evaluation
	Precision, Recall, and Fβ-score
	Exact Match (EM)
	Modified Accuracy (MA)

	Hyperparameters
	Main Results
	Spelling Error Correction for Bangla Language
	Bangla Spelling Error Analysis
	Spelling Error Correction for Resource-Scarce Indic Languages

	Ablation Study
	Effect of the Detector Network
	Effect of the Purificator Network
	Effect of Masked Characters

	Drawbacks of DPCSpell

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

